2024 연구성과별 연구자 정보 (1 / 2344)

※ 현재 Web of Science 저자 정보만 집계되어 있습니다.
※ 컨트롤 + 클릭으로 열별 다중 정렬 가능합니다.
Excel 다운로드
Document Title Author Full Name Author Short Name Index Corresponding Address ResearcherID ResearcherID Author Name ORCID ORCID Author Name Related Email
'Assessment of deep learning-based auto-contouring on interobserver consistency in target volume and organs-at-risk delineation for breast cancer: Implications for RTQA program in a multi-institutional study ' (vol 73 , 103599, 2024) Choi, Min Seo Choi, MS 1 Yonsei Univ, Coll Med, Dept Radiat Oncol, Seoul, South Korea jinsung@yuhs.ac;radiat@snu.ac.kr;
'Assessment of deep learning-based auto-contouring on interobserver consistency in target volume and organs-at-risk delineation for breast cancer: Implications for RTQA program in a multi-institutional study ' (vol 73 , 103599, 2024) Chang, Jee Suk Chang, JS 2 ABU-3301-2022 Chang, Jee Suk 0000-0001-7685-3382 Chang, Jee Suk jinsung@yuhs.ac;radiat@snu.ac.kr;
'Assessment of deep learning-based auto-contouring on interobserver consistency in target volume and organs-at-risk delineation for breast cancer: Implications for RTQA program in a multi-institutional study ' (vol 73 , 103599, 2024) Kim, Kyubo Kim, K 3 Ewha Womans Univ, Coll Med, Dept Radiat Oncol, Seoul, South Korea jinsung@yuhs.ac;radiat@snu.ac.kr;
'Assessment of deep learning-based auto-contouring on interobserver consistency in target volume and organs-at-risk delineation for breast cancer: Implications for RTQA program in a multi-institutional study ' (vol 73 , 103599, 2024) Kim, Kyubo Kim, K 3 Seoul Natl Univ, Bundang Hosp, Dept Radiat Oncol, Coll Med, Seongnam, South Korea jinsung@yuhs.ac;radiat@snu.ac.kr;
'Assessment of deep learning-based auto-contouring on interobserver consistency in target volume and organs-at-risk delineation for breast cancer: Implications for RTQA program in a multi-institutional study ' (vol 73 , 103599, 2024) Kim, Jin Hee Kim, JH 4 Yonsei Univ, Coll Med, Dept Radiat Oncol, Seoul, South Korea jinsung@yuhs.ac;radiat@snu.ac.kr;
'Assessment of deep learning-based auto-contouring on interobserver consistency in target volume and organs-at-risk delineation for breast cancer: Implications for RTQA program in a multi-institutional study ' (vol 73 , 103599, 2024) Kim, Jin Hee Kim, JH 4 Keimyung Univ, Dongsan Med Ctr, Sch Med, Dept Radiat Oncol, Daegu, South Korea jinsung@yuhs.ac;radiat@snu.ac.kr;
'Assessment of deep learning-based auto-contouring on interobserver consistency in target volume and organs-at-risk delineation for breast cancer: Implications for RTQA program in a multi-institutional study ' (vol 73 , 103599, 2024) Kim, Tae Hyung Kim, TH 5 Eulji Univ, Nowon Eulji Med Ctr, Dept Radiat Oncol, Sch Med, Seoul, South Korea jinsung@yuhs.ac;radiat@snu.ac.kr;
'Assessment of deep learning-based auto-contouring on interobserver consistency in target volume and organs-at-risk delineation for breast cancer: Implications for RTQA program in a multi-institutional study ' (vol 73 , 103599, 2024) Kim, Tae Hyung Kim, TH 5 Sungkyunkwan Univ, Samsung Changwon Hosp, Dept Radiat Oncol, Sch Med, Chang Won, South Korea jinsung@yuhs.ac;radiat@snu.ac.kr;
'Assessment of deep learning-based auto-contouring on interobserver consistency in target volume and organs-at-risk delineation for breast cancer: Implications for RTQA program in a multi-institutional study ' (vol 73 , 103599, 2024) Kim, Sungmin Kim, S 6 Dong A Univ, Dong A Univ Hosp, Dept Radiat Oncol, Coll Med, Busan, South Korea jinsung@yuhs.ac;radiat@snu.ac.kr;
'Assessment of deep learning-based auto-contouring on interobserver consistency in target volume and organs-at-risk delineation for breast cancer: Implications for RTQA program in a multi-institutional study ' (vol 73 , 103599, 2024) Cha, Hyejung Cha, H 7 Yonsei Univ, Wonju Coll Med, Dept Radiat Oncol, Wonju, South Korea jinsung@yuhs.ac;radiat@snu.ac.kr;
'Assessment of deep learning-based auto-contouring on interobserver consistency in target volume and organs-at-risk delineation for breast cancer: Implications for RTQA program in a multi-institutional study ' (vol 73 , 103599, 2024) Cho, Oyeon Cho, O 8 Ajou Univ, Sch Med, Dept Radiat Oncol, Suwon, South Korea jinsung@yuhs.ac;radiat@snu.ac.kr;
'Assessment of deep learning-based auto-contouring on interobserver consistency in target volume and organs-at-risk delineation for breast cancer: Implications for RTQA program in a multi-institutional study ' (vol 73 , 103599, 2024) Choi, Jin Hwa Choi, JH 9 Chung Ang Univ Hosp, Dept Radiat Oncol, Seoul, South Korea LWZ-8057-2024 CHOI, JIN HWA jinsung@yuhs.ac;radiat@snu.ac.kr;
'Assessment of deep learning-based auto-contouring on interobserver consistency in target volume and organs-at-risk delineation for breast cancer: Implications for RTQA program in a multi-institutional study ' (vol 73 , 103599, 2024) Choi, Jin Hwa Choi, JH 9 Jeju Univ, Jeju Natl Univ Hosp, Dept Radiat Oncol, Coll Med, Jeju, South Korea LWZ-8057-2024 CHOI, JIN HWA jinsung@yuhs.ac;radiat@snu.ac.kr;
'Assessment of deep learning-based auto-contouring on interobserver consistency in target volume and organs-at-risk delineation for breast cancer: Implications for RTQA program in a multi-institutional study ' (vol 73 , 103599, 2024) Kim, Myungsoo Kim, M 10 Catholic Univ Korea, Incheon St Marys Hosp, Coll Med, Dept Radiat Oncol, Seoul, South Korea jinsung@yuhs.ac;radiat@snu.ac.kr;
'Assessment of deep learning-based auto-contouring on interobserver consistency in target volume and organs-at-risk delineation for breast cancer: Implications for RTQA program in a multi-institutional study ' (vol 73 , 103599, 2024) Kim, Juree Kim, J 11 교신저자 CHA Univ, Ilsan CHA Med Ctr, Dept Radiat Oncol, Sch Med, Goyang, South Korea jinsung@yuhs.ac;radiat@snu.ac.kr;
페이지 이동: