2025 연구성과 (90 / 151)

※ 컨트롤 + 클릭으로 열별 다중 정렬 가능합니다.
Excel 다운로드
WoS SCOPUS Document Type Document Title Abstract Authors Affiliation ResearcherID (WoS) AuthorsID (SCOPUS) Author Email(s) Journal Name JCR Abbreviation ISSN eISSN Volume Issue WoS Edition WoS Category JCR Year IF JCR (%) FWCI FWCI Update Date WoS Citation SCOPUS Citation Keywords (WoS) KeywordsPlus (WoS) Keywords (SCOPUS) KeywordsPlus (SCOPUS) Language Publication Stage Publication Year Publication Date DOI JCR Link DOI Link WOS Link SCOPUS Link
Article Effects of dental implant surface treated with sandblasting large grit acid-etching and femtosecond laser on implant stability, marginal bone volume, and histological results in a rabbit model PURPOSE: The purpose of this study was to compare the surface characteristics and healing patterns after implantation of implants treated with SLA and those treated with both SLA and femtosecond laser. MATERIALS AND METHODS: A total of 10 male New Zealand white rabbits were used to compare recovery levels between implants treated with SLA (SLA group) and those treated with both SLA and femtosecond laser (SF group). The implants' surface characteristics were determined through topographic evaluation, element analysis, surface roughness, and wettability evaluation. In total, 4 implants were placed in each rabbit (2 in each tibia), with 20 implants per treatment group. Using the implant stability quotient (ISQ), marginal bone volume, and histological analysis (bone-to-implant contact (BIC), bone volume/tissue volume (BV/TV)), and post implantation outcomes were assessed. Outcome data were analyzed using independent t-tests, Mann-Whitney U tests, Wilcoxon signed-rank tests, and one-way ANOVA (alpha = 0.05). RESULTS: No significant differences were noted between SLA and SF groups in terms of ISQ, marginal bone volume, BIC, and BV/TV (P > .05). However, significant differences in ISQ were observed within each group over time (P < .05). Furthermore, significant differences were noted in the marginal bone volume of the SF group (P < .05) and the BV/TV of the SLA group between weeks 4 and 6 (P < .05). CONCLUSION: Surface treatment via SLA and femtosecond laser is feasible compared with SLA treatment alone in terms of ISQ, marginal bone volume, BIC, and BV/TV. However, further clinical research is warranted. Son, Young-Tak; Son, HyunDeok; Cho, Hoseong; Lee, Jae-Mok; Abu Saleah, Sm; Hwang, JunHo; Lee, JongHoon; Kim, HyunDeok; Jin, Myoung-Uk; Kim, Jeehyun; Jeon, Mansik; Lee, Kyu-Bok Kyungpook Natl Univ, Grad Sch, Dept Dent Sci, Daegu, South Korea; Kyungpook Natl Univ, Adv Dent Device Dev Inst, Daegu, South Korea; Kyungpook Natl Univ, Coll IT Engn, Sch Elect & Elect Engn, Daegu, South Korea; Kyungpook Natl Univ, Sch Dent, Dept Periodontol, Daegu 41940, South Korea; Kyungpook Natl Univ, ICT Convergence Res Ctr, Daegu, South Korea; Kyungpook Natl Univ, Inst Adv Convergence Technol, Daegu, South Korea; Kyungpook Natl Univ, Sch Dent, Dept Conservat Dent, Daegu, South Korea; Kyungpook Natl Univ, Sch Dent, Dept Periodontol, 2177 Dalgubuldaero, Daegu 41940, South Korea SON, Keunbada/AAG-8089-2019 57219111205; 59709807200; 57209416599; 17346330000; 57218499446; 59762850000; 57204786073; 55663858300; 56492091300; 7601373350; 24171094000; 57220586528 kblee@knu.ac.kr; JOURNAL OF ADVANCED PROSTHODONTICS J ADV PROSTHODONT 2005-7806 2005-7814 17 2 SCIE DENTISTRY, ORAL SURGERY & MEDICINE 2024 2.5 29.3 N/A 0 0 Dental implant surface treatment; Femtosecond laser; Implant stability; Osseointegration; Sandblasting acid-etching TITANIUM; CONTACT Dental implant surface treatment; Femtosecond laser; Implant stability; Osseointegration; Sandblasting acid-etching English 2025 2025-04 10.4047/jap.2025.17.2.101 바로가기 바로가기 바로가기 바로가기
Article Dihadron azimuthal correlations in deep-inelastic scattering off nuclear targets We measured the nuclear dependence of the di-pion azimuthal correlation function in deep-inelastic scattering (DIS) using the CEBAF Large Acceptance Spectrometer and a 5 GeV electron beam. As the nuclear-target size increases, transitioning from deuterium to carbon, iron, and lead, the correlation function broadens monotonically. Its shape exhibits a significant dependence on kinematics, including the transverse momentum of the pions and the difference in their rapidity. None of the various Monte Carlo event generators we evaluated could fully replicate the observed correlation functions and nuclear effects throughout the entire phase space. As the first study of its kind in DIS experiments, this research provides an important baseline for enhancing our understanding of the interplay between the nuclear medium and the hadronization process in these reactions. Paul, S. J.; Moran, S.; Arratia, M.; Brooks, W. K.; Hakobyan, H.; El Alaoui, A.; Achenbach, P.; Alvarado, J. S.; Armstrong, W. R.; Atac, H.; Avakian, H.; Baashen, L.; Baltzell, N. A.; Barion, L.; Bashkanov, M.; Battaglieri, M.; Benkel, B.; Benmokhtar, F.; Bianconi, A.; Biselli, A. S.; Bondi, M.; Booth, W. A.; Bossu, F.; Boiarinov, S.; Brinkmann, K. -Th.; Briscoe, W. J.; Bueltmann, S.; Burkert, V. D.; Cao, T.; Capobianco, R.; Carman, D. S.; Chatagnon, P.; Ciullo, G.; Cole, P. L.; Contalbrigo, M.; D'Angelo, A.; Dashyan, N.; De Vita, R.; Deur, A.; Diehl, S.; Dilks, C.; Djalali, C.; Dupre, R.; El Fassi, L.; Elouadrhiri, L.; Eugenio, P.; Filippi, A.; Fogler, C.; Gavalian, G.; Gilfoyle, G. P.; Glazier, D. I.; Golubenko, A. A.; Gothe, R. W.; Guidal, M.; Hafidi, K.; Hattawy, M.; Hauenstein, F.; Heddle, D.; Hobart, A.; Holtrop, M.; Ilieva, Y.; Ireland, D. G.; Isupov, E. L.; Jenkins, D.; Jiang, H.; Jo, H. S.; Joo, K.; Kageya, T.; Khandaker, M.; Kim, A.; Kim, W.; Klimenko, V.; Kubarovsky, V.; Kuhn, S. E.; Lanza, L.; Lenisa, P.; Livingston, K.; MacGregor, I. J. D.; Marchand, D.; Mascagna, V.; Matamoros, D.; McKinnon, B.; Migliorati, S.; Mineeva, T.; Mirazita, M.; Mokeev, V.; Camacho, C. Munoz; Nadel-Turonski, P.; Neupane, K.; Niccolai, S.; Niculescu, G.; Osipenko, M.; Ostrovidov, A. I.; Paolone, M.; Pappalardo, L. L.; Paremuzyan, R.; Pasyuk, E.; Phelps, W.; Pilleux, N.; Pokhrel, M.; Rafael, S. Polcher; Price, J. W.; Prok, Y.; Reed, Trevor; Richards, J.; Ripani, M.; Rosner, G.; Rossi, P.; Salgado, C.; Schmidt, A.; Scott, M. B. C.; Sharabian, Y. G.; Shirokov, E. V.; Shrestha, U.; Sparveris, N.; Spreafico, M.; Stepanyan, S.; Strakovsky, I. I.; Strauch, S.; Tan, J. A.; Tyson, R.; Ungaro, M.; Vallarino, S.; Venturelli, L.; Tommaso, V.; Voutier, E.; Watts, D. P.; Wei, X.; Williams, R.; Wood, M. H.; Xu, L.; Zachariou, N.; Zurek, M. Argonne Natl Lab, Argonne, IL 60439 USA; Arizona State Univ, Tempe, AZ 85287 USA; Calif State Univ Dominguez Hills, Carson, CA 90747 USA; Univ Calif Riverside, Riverside, CA 92521 USA; Canisius Coll, Buffalo, NY USA; Carnegie Mellon Univ, Pittsburgh, PA 15213 USA; Catholic Univ Amer, Washington, DC 20064 USA; Univ Paris Saclay, CEA, IRFU, F-91191 Gif Sur Yvette, France; Christopher Newport Univ, Newport News, VA 23606 USA; Univ Connecticut, Storrs, CT 06269 USA; Duquesne Univ, 600 Forbes Ave, Pittsburgh, PA 15282 USA; Fairfield Univ, Fairfield, CT 06824 USA; Univ Ferrara, I-44121 Ferrara, Italy; Florida Int Univ, Miami, FL 33199 USA; Florida State Univ, Tallahassee, FL 32306 USA; George Washington Univ, Washington, DC 20052 USA; INFN, Sez Catania, Via S Sofia 64, I-95123 Catania, Italy; INFN, Sez Ferrara, I-44100 Ferrara, Italy; INFN, Lab Nazl Frascati, I-00044 Frascati, Italy; INFN, Sez Genova, I-16146 Genoa, Italy; INFN, Sez Roma Tor Vergata, I-00133 Rome, Italy; INFN, Sez Torino, I-10125 Turin, Italy; INFN, Sez Pavia, I-27100 Pavia, Italy; Univ Paris Saclay, CNRS, IN2P3, IJCLab, F-91405 Orsay, France; James Madison Univ, Harrisonburg, VA 22807 USA; Kyungpook Natl Univ, Daegu 41566, South Korea; Lamar Univ, 4400 MLK Blvd,POB 10046, Beaumont, TX 77710 USA; Univ Michigan, 500 S State St, Ann Arbor, MI 48109 USA; Mississippi State Univ, Mississippi State, MS 39762 USA; Univ New Hampshire, Durham, NH 03824 USA; New Mexico State Univ, POB 30001, Las Cruces, NM 88003 USA; Norfolk State Univ, Norfolk, VA 23504 USA; Ohio Univ, Athens, OH 45701 USA; Old Dominion Univ, Norfolk, VA 23529 USA; Univ Giessen, Phys Inst 2, D-35392 Giessen, Germany; Rensselaer Polytech Inst, Troy, NY 12180 USA; Univ Richmond, Richmond, VA 23173 USA; Univ Roma Tor Vergata, I-00133 Rome, Italy; Lomonosov Moscow State Univ, Skobeltsyn Inst Nucl Phys, Moscow 119234, Russia; Univ South Carolina, Columbia, SC 29208 USA; Temple Univ, Philadelphia, PA 19122 USA; Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA; Univ Tecn Federico Santa Maria, Casilla 110-V, Valparaiso, Chile; Univ Brescia, I-25123 Brescia, Italy; Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland; Univ York, York YO10 5DD, N Yorkshire, England; Virginia Tech, Blacksburg, VA 24061 USA; Univ Virginia, Charlottesville, VA 22901 USA; Yerevan Phys Inst, Yerevan 375036, Armenia; King Saud Univ, Riyadh, Saudi Arabia; Idaho State Univ, Pocatello, ID 83209 USA Alaoui, Ahmed/B-4638-2015; MacGregor, Ian/D-4072-2011; Isupov, Evgeny/J-2976-2012; Pokhrel, Madhusudhan/LGY-9951-2024; Mascagna, Valerio/HLQ-1103-2023; Schumacher, Reinhard/K-6455-2013; Burkert, Volker/AAF-7395-2020; Baashen, Lamya/KRP-2733-2024; Ireland, David/E-8618-2010; Pappalardo, Luciano/AAB-2380-2021 57208699533; 57274532300; 55087161000; 35400106000; 57208726428; 35190046800; 7004424420; 57211254204; 57221249616; 57210826461; 7006613415; 57215197650; 35226938500; 23033257000; 6506107717; 7004520678; 57605743600; 57218527298; 7102358422; 35227021700; 54398256600; 57955372500; 35725064700; 35277071300; 7007041327; 56550149800; 57203690067; 7004440244; 56362746200; 57221140443; 7005853901; 57202987431; 6603765308; 35227101500; 7003468594; 59459414400; 6507987909; 59345445900; 6604025441; 57217562965; 56014525700; 35374416600; 35069234100; 14041647600; 35227171600; 57215091978; 8695796100; 57210218314; 35227304900; 6603686320; 8258896400; 57210932456; 7102183142; 7003432409; 34570410000; 56115055200; 55382488300; 7003821864; 57214681432; 7005060869; 35227424100; 7006927902; 35227460400; 57237808500; 59674307500; 35227429400; 57202638465; 26424284700; 13405022500; 36604596000; 35227558900; 57204052333; 6701392158; 7103392237; 56047689500; 56273696800; 9278396500; 7006040977; 7004889588; 22135531000; 58514101300; 35227669300; 57224626542; 26023453000; 35227656900; 7004546205; 12244632700; 6603294089; 57212715831; 35227746500; 35227763200; 6701825145; 58304594000; 22986163400; 7004207376; 36085149700; 35227791700; 56362788600; 57385323900; 57814422500; 59195107800; 55329126900; 35227871000; 57219768156; 57733236300; 7003515879; 7102538331; 58092074700; 35228024200; 57198983235; 59080639200; 35227996900; 15030349100; 57213706614; 6507906118; 57221112096; 58334068900; 22969481600; 7004321986; 57200599233; 57222078258; 35228099400; 57223798916; 22136651400; 59230115200; 6603350317; 7201539565; 13204321200; 58422408300; 57201559118; 59231464800; 36836386600; 57213092440 miguel.arratia@ucr.edu; PHYSICAL REVIEW C PHYS REV C 2469-9985 2469-9993 111 3 SCIE PHYSICS, NUCLEAR 2024 3.4 29.5 0 2025-05-07 0 0 HADRONIZATION; FRAGMENTATION English 2025 2025-03-05 10.1103/physrevc.111.035201 바로가기 바로가기 바로가기 바로가기
Article Measurement of the nucleon spin structure functions for 0.01 < Q² < 1GeV² using CLAS The spin structure functions of the proton and the deuteron were measured during the EG4 experiment at Jefferson Lab in 2006. Data were collected for longitudinally polarized electron scattering off longitudinally polarized NH3 and ND3 targets, for Q(2) values as small as 0.012 and 0.02 GeV2, respectively, using the CEBAF Large Acceptance Spectrometer. This is the archival paper of the EG4 experiment that summarizes the previously reported results of the polarized structure functions g(1), A(1)F(1), and their moments (Gamma(1)) over bar, (gamma(0)) over bar, and (I) over bar (TT), for both the proton and the deuteron. In addition, we report on new results on the neutron g(1) extracted by combining proton and deuteron data and correcting for Fermi smearing, and on the neutron moments (Gamma(1)) over bar, (gamma(0)) over bar, and (I) over bar (TT) formed directly from those of the proton and the deuteron. Our data are in good agreement with the Gerasimov-Drell-Hearn sum rule for the proton, deuteron, and neutron. Furthermore, the isovector combination was formed for g(1) and the Bjorken integral (Gamma) over bar (p-n)(1) , and it was compared to available theoretical predictions. All of our results, to the best of our knowledge, provide for the first time extensive tests of spin observable predictions from chiral effective field theory (chi EFT) in a Q(2) range commensurate with the pion mass. They motivate further improvement in.EFT calculations from other approaches such as the lattice gauge method. Deur, A.; Kuhn, S. E.; Ripani, M.; Zheng, X.; Acar, A. G.; Achenbach, P.; Adhikari, K. P.; Alvarado, J. S.; Amaryan, M. J.; Armstrong, W. R.; Atac, H.; Avakian, H.; Baashen, L.; Baltzell, N. A.; Barion, L.; Bashkanov, M.; Battaglieri, M.; Benkel, B.; Benmokhtar, F.; Bianconi, A.; Biselli, A. S.; Booth, W. A.; Bossu, F.; Bosted, P.; Boiarinov, S.; Brinkmann, K-Th; Briscoe, W. J.; Bueltmann, S.; Burkert, V. D.; Carman, D. S.; Chatagnon, P.; Chen, J-P.; Ciullo, G.; Cole, P. L.; Contalbrigo, M.; Crede, V.; D'Angelo, A.; Dashyan, N.; De Vita, R.; Defurne, M.; Diehl, S.; Djalali, C.; Drozdov, V. A.; Dupre, R.; Egiyan, H.; El Alaoui, A.; El Fassi, L.; Elouadrhiri, L.; Eugenio, P.; Faggert, J. C.; Fegan, S.; Fersch, R.; Filippi, A.; Gates, K.; Gavalian, G.; Gilfoyle, G. P.; Gothe, R. W.; Guo, L.; Hakobyan, H.; Hattawy, M.; Hauenstein, F.; Heddle, D.; Hobart, A.; Holtrop, M.; Ireland, D. G.; Isupov, E. L.; Jiang, H.; Jo, H. S.; Joosten, S.; Kang, H.; Keith, C.; Khandaker, M.; Kim, W.; Klein, F. J.; Klimenko, V.; Konczykowski, P.; Kovacs, K.; Kripko, A.; Kubarovsky, V.; Lanza, L.; Lee, S.; Lenisa, P.; Li, X.; Long, E.; MacGregor, I. J. D.; Marchand, D.; Mascagna, V.; Matamoros, D.; McKinnon, B.; Meekins, D.; Migliorati, S.; Mineeva, T.; Mirazita, M.; Mokeev, V.; Camacho, C. Munoz; Nadel-Turonski, P.; Nagorna, T.; Neupane, K.; Niccolai, S.; Osipenko, M.; Ostrovidov, A. I.; Pandey, P.; Paolone, M.; Pappalardo, L. L.; Paremuzyan, R.; Pasyuk, E.; Paul, S. J.; Phelps, W.; Phillips, S. K.; Pierce, J.; Pilleux, N.; Pokhrel, M.; Price, J. W.; Prok, Y.; Radic, A.; Reed, Trevor; Richards, J.; Rosner, G.; Rossi, P.; Rusova, A. A.; Salgado, C.; Schmidt, A.; Schumacher, R. A.; Sharabian, Y. G.; Shirokov, E. V.; Shrestha, U.; Sirca, S.; Sparveris, N.; Spreafico, M.; Stepanyan, S.; Strakovsky, I. I.; Strauch, S.; Sulkosky, V.; Tan, J. A.; Tenorio, M.; Trotta, N.; Tyson, R.; Ungaro, M.; Upton, D. W.; Vallarino, S.; Venturelli, L.; Voskanyan, H.; Voutier, E.; Watts, D. P.; Wei, X.; Wood, M. H.; Zachariou, N.; Zhang, J.; Zurek, M. Argonne Natl Lab, Argonne, IL 60439 USA; Arizona State Univ, Tempe, AZ 85287 USA; Calif State Univ Dominguez Hills, Carson, CA 90747 USA; Canisius Coll, Buffalo, NY 14208 USA; Carnegie Mellon Univ, Pittsburgh, PA 15213 USA; Catholic Univ Amer, Washington, DC 20064 USA; Univ Paris Saclay, CEA, IRFU, F-91191 Gif Sur Yvette, France; Christopher Newport Univ, Newport News, VA 23606 USA; Coll William & Mary, Williamsburg, VA 23187 USA; Duquesne Univ, 600 Forbes Ave, Pittsburgh, PA 15282 USA; Fairfield Univ, Fairfield, CT 06824 USA; Florida Int Univ, Miami, FL 33199 USA; Florida State Univ, Tallahassee, FL 32306 USA; George Washington Univ, Washington, DC 20052 USA; Georgia Inst Technol, Atlanta, GA 30332 USA; INFN, Sez Ferrara, I-44100 Ferrara, Italy; INFN, Lab Nazl Frascati, I-00044 Frascati, Italy; INFN, Sez Genova, I-16146 Genoa, Italy; INFN, Sez Pavia, I-27100 Pavia, Italy; INFN, Sez Roma Tor Vergata, I-00133 Rome, Italy; INFN, Sez Torino, I-10125 Turin, Italy; Kyungpook Natl Univ, Daegu 41566, South Korea; Lamar Univ, 4400 MLK Blvd,POB 10046, Beaumont, TX 77710 USA; MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA; Mississippi State Univ, Mississippi State, MS 39762 USA; New Mexico State Univ, POB 30001, Las Cruces, NM 88003 USA; Norfolk State Univ, Norfolk, VA 23504 USA; Ohio Univ, Athens, OH 45701 USA; Old Dominion Univ, Norfolk, VA 23529 USA; Univ Giessen, Phys Inst 2, D-35392 Giessen, Germany; Seoul Natl Univ, Seoul 08826, South Korea; Lomonosov Moscow State Univ, Skobeltsyn Inst Nucl Phys, Moscow 119234, Russia; Temple Univ, Philadelphia, PA 19122 USA; Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA; Univ Brescia, I-25123 Brescia, Italy; Univ Ferrara, I-44121 Ferrara, Italy; Univ Roma Tor Vergata, I-00133 Rome, Italy; Univ Tecn Federico Santa Maria, Casilla 110-V, Valparaiso, Chile; Univ Paris Saclay, CNRS, IN2P3, IJCLab, F-91405 Orsay, France; Univ Calif Riverside, 900 Univ Ave, Riverside, CA 92521 USA; Univ Connecticut, Storrs, CT 06269 USA; Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland; Univ Ljubljana, Ljubljana 1000, Slovenia; Univ New Hampshire, Durham, NH 03824 USA; Univ Richmond, Richmond, VA 23173 USA; Univ South Carolina, Columbia, SC 29208 USA; Univ Virginia, Charlottesville, VA 22904 USA; Univ York, York YO10 5DD, N Yorkshire, England; Yerevan Phys Inst, Yerevan 375036, Armenia; Coll William & Mary, Williamsburg, VA 23187 USA; Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA; Idaho State Univ, Pocatello, ID 83209 USA; Oak Ridge Natl Lab, 1 Bethel Valley Rd, Oak Ridge, TN 37830 USA Pappalardo, Luciano/AAB-2380-2021; Drozdov, Vadim/E-5456-2012; MacGregor, Ian/D-4072-2011; Ireland, David/E-8618-2010; Isupov, Evgeny/J-2976-2012; Alaoui, Ahmed/B-4638-2015; Higinbotham, Douglas/J-9394-2014; Burkert, Volker/AAF-7395-2020; Mascagna, Valerio/HLQ-1103-2023; Schumacher, Reinhard/K-6455-2013 6604025441; 7103392237; 7003515879; 13002614100; 59195107600; 7004424420; 25823658400; 57211254204; 35277104000; 57221249616; 57210826461; 7006613415; 57215197650; 35226938500; 23033257000; 6506107717; 7004520678; 57605743600; 57218527298; 7102358422; 35227021700; 57955372500; 35725064700; 35404427600; 35277071300; 7007041327; 56550149800; 57203690067; 7004440244; 7005853901; 57202987431; 57216185967; 6603765308; 35227101500; 7003468594; 6602900241; 59459414400; 6507987909; 59345445900; 56272524200; 57217562965; 35374416600; 57204172044; 35069234100; 35227171500; 35190046800; 14041647600; 35227171600; 57215091978; 59181445500; 56978985100; 57216999696; 8695796100; 57222285191; 35227304900; 6603686320; 7102183142; 59708554300; 57208726428; 56115055200; 55382488300; 7003821864; 57214681432; 7005060869; 57209456981; 35227460400; 59707384600; 35227429400; 23034837300; 57207380246; 7005417443; 13405022500; 35227558900; 57251793200; 57204052333; 26424345000; 36573751400; 57205462419; 6701392158; 56047689500; 58375580000; 56273696800; 57206742138; 49061311400; 7006040977; 7004889588; 22135531000; 58514101300; 35227669300; 57216997301; 57224626542; 26023453000; 35227656900; 7004546205; 12244632700; 6603294089; 57192813403; 57212715831; 35227746500; 6701825145; 58304594000; 57226647977; 22986163400; 7004207376; 36085149700; 35227791700; 57208699533; 56362788600; 8834541400; 35227872600; 57385323900; 57814422500; 55329126900; 35227871000; 57994838700; 57219768156; 57733236300; 7102538331; 58092074700; 59350477100; 35228024200; 57198983235; 7201653195; 35227996900; 15030349100; 57213706614; 34573433700; 6507906118; 57221112096; 7004491103; 22969481600; 7004321986; 9241036200; 57200599233; 59194916500; 57733253800; 57222078258; 35228099400; 58143810500; 57223798916; 22136651400; 6504161736; 6603350317; 7201539565; 13204321200; 57201559118; 36836386600; 57215210642; 57213092440 xiaochao@jlab.org; PHYSICAL REVIEW C PHYS REV C 2469-9985 2469-9993 111 3 SCIE PHYSICS, NUCLEAR 2024 3.4 29.5 0 2025-05-07 0 1 DEPENDENT STRUCTURE-FUNCTION; STRUCTURE FUNCTIONS G(1)(P); DEEP-INELASTIC-SCATTERING; STRUCTURE-FUNCTION G1(X); HIGH-ENERGY ELECTRONS; SUM-RULES; PRECISION-MEASUREMENT; MAGNETIC DEFLECTION; HYDROGEN MOLECULES; COMPTON-SCATTERING English 2025 2025-03-25 10.1103/physrevc.111.035202 바로가기 바로가기 바로가기 바로가기
Article Nuclear pairing energy versus mean field energy: Examination of their relationship and interdependence in reaching the energy minimum We study the evolution of total binding energy (TBE), mean field energy, and pairing energy of Pb, Hg, and Ar isotopes, as a function of the nuclear deformation. As for the nuclear model, we exploit a deformed relativistic Hartree-Bogoliubov theory in continuum (DRHBc), and a deformed Skyrme Hartree-Fock plus BCS model. It is found that the dependence of pairing energy on the deformation is strongly correlated to that of the mean field energy, which is obtained by subtracting the pairing energy from the TBE; in other words, the energy minimum characterized by a large negative mean field energy has a smaller negative pairing energy or, equivalently, a smaller positive pairing gap, while a stronger pairing energy is found in the region away from the minimum of the total energy. Consequently, the two energies show an antisymmetric feature in their deformation dependence, although the energy scales are very different. Moreover, since the pairing energy has a negative sign with respect to to the pairing gap, the evolution of mean field energy follows closely that of the pairing gap. This implies that the pairing energy (or pairing gap) and the mean field energy "talk to each other" and work together along the potential energy curve to determine the energy minimum and/or the local minimum. Mun, Myeong-Hwan; Ha, Eunja; Cheoun, Myung-Ki; Tanimura, Yusuke; Sagawa, Hiroyuki; Colo, Gianluca Soongsil Univ, Dept Phys, Seoul 06978, South Korea; Soongsil Univ, Origin Matter & Evolut Galaxies OMEG Inst, Seoul 06978, South Korea; Kyungpook Natl Univ, Ctr High Energy Phys, Daegu 41566, South Korea; Hanyang Univ, Dept Phys, Seoul 04763, South Korea; Hanyang Univ, Res Inst Nat Sci, Seoul 04763, South Korea; Nishina Ctr Accelerator Based Sci, RIKEN, Wako 3510198, Japan; Univ Aizu, Ctr Math & Phys, Aizu Wakamatsu, Fukushima 9658560, Japan; Univ Milan, Dipartimento Fis, Via Celoria 16, I-20133 Milan, Italy; INFN, Sez Milano, Via Celoria 16, I-20133 Milan, Italy Colò, Gianluca/Q-9098-2019 26655971100; 12778681800; 6701826023; 36864329500; 57203061180; 22960623600 aa3101@gmail.com; ejaha@hanyang.ac.kr; cheoun@ssu.ac.kr; tanimura@ssu.ac.kr; sagawa@ribf.riken.jp; colo@mi.infn.it; PHYSICAL REVIEW C PHYS REV C 2469-9985 2469-9993 111 5 SCIE PHYSICS, NUCLEAR 2024 3.4 29.5 N/A 0 0 STATES; HALO English 2025 2025-05-05 10.1103/physrevc.111.054305 바로가기 바로가기 바로가기 바로가기
Article Photoproduction of the E plus hyperon using linearly polarized photons with CLAS Background: Measurements of the polarization observables E, P, T, Ox, Oz for the reaction gamma p-* KS0 E+ using a linearly polarized photon beam of energy 1.1 to 2.1 GeV are reported. Purpose: The measured data provide information on a channel that has not been studied extensively, but is required for a full coupled-channel analysis in the nucleon resonance region. Method: Observables have been simultaneously extracted using likelihood sampling with a Markov-Chain Monte Carlo process. Results: Angular distributions in bins of photon energy E gamma are produced for each polarization observable. T, Ox, and Oz are first time measurements of these observables in this reaction. The extraction of E extends the energy range beyond a previous measurement. The measurement of P, the recoil polarization, is consistent with previous measurements. Conclusions: The measured data are shown to be significant enough to affect the estimation of the nucleon resonance parameters when fitted within a coupled-channels model. Clark, L.; McKinnon, B.; Ireland, D. G.; Glazier, D. I.; Livingston, K.; Roenchen, D.; Acar, A. G.; Achenbach, P.; Alvarado, J. S.; Amaryan, M. J.; Armstrong, W. R.; Atac, H.; Baashen, L.; Barion, L.; Battaglieri, M.; Benkel, B.; Benmokhtar, F.; Bianconi, A.; Biselli, A. S.; Booth, W. A.; Bossu, F.; Brinkmann, K. -Th.; Briscoe, W. J.; Brooks, W. K.; Bueltmann, S.; Cao, T.; Capobianco, R.; Carman, D. S.; Celentano, A.; Chatagnon, P.; Ciullo, G.; Cole, P. L.; Contalbrigo, M.; D'Angelo, A.; Dashyan, N.; De Vita, R.; Defurne, M.; Deur, A.; Diehl, S.; Djalali, C.; Dugger, M.; Dupre, R.; Egiyan, H.; El Alaoui, A.; El Fassi, L.; Eugenio, P.; Fegan, S.; Ferguson, R. F.; Filippi, A.; Fogler, C.; Gates, K.; Gavalian, G.; Gilfoyle, G. P.; Golubenko, A. A.; Gothe, R. W.; Guidal, M.; Hakobyan, H.; Hattawy, M.; Hauenstein, F.; Hayward, T. B.; Heddle, D.; Hobart, A.; Holtrop, M.; Isupov, E. L.; Jenkins, D.; Jiang, H.; Jo, H. S.; Keller, D.; Khandaker, M.; Kim, W.; Klein, F. J.; Klimenko, V.; Kripko, A.; Kubarovsky, V.; Lanza, L.; Lenisa, P.; Li, X.; Macgregor, I. J. D.; Marchand, D.; Mascagna, V.; Matamoros, D.; Migliorati, S.; Mokeev, V.; Camacho, C. Munoz; Nadel-Turonski, P.; Neupane, K.; Niccolai, S.; Niculescu, G.; Osipenko, M.; Pandey, P.; Paolone, M.; Pappalardo, L. L.; Paremuzyan, R.; Pasyuk, E.; Paul, S. J.; Phelps, W.; Pilleux, N.; Pokhrel, M.; Rafael, S. Polcher; Prok, Y.; Reed, T.; Richards, J.; Ripani, M.; Ritchie, B. G.; Ritman, J.; Rosner, G.; Salgado, C.; Schadmand, S.; Schmidt, A.; Schumacher, R. A.; Sharabian, Y. G.; V. Shirokov, E.; Shrestha, U.; Sokhan, D.; Sparveris, N.; Spreafico, M.; Stepanyan, S.; Strakovsky, I. I.; Strauch, S.; Tan, J. A.; Tenorio, M.; Trotta, N.; Tyson, R.; Ungaro, M.; Venturelli, L.; Voskanyan, H.; Voutier, E.; Watts, D. P.; Wei, X.; Williams, R.; Xu, L.; Zachariou, N.; Zhao, Z. W.; Zurek, M. Univ Glasgow, Glasgow City G12 8QQ, England; Forschungszentrum Julich, Inst Adv Simulat IAS 4, D-52425 Julich, Germany; Argonne Natl Lab, Argonne, IL 60439 USA; Arizona State Univ, Tempe, AZ 85287 USA; Carnegie Mellon Univ, Pittsburgh, PA 15213 USA; Catholic Univ Amer Washington, Washington, DC 20064 USA; Univ Paris Saclay, CEA, IRFU, F-91191 Gif Sur Yvette, France; Christopher Newport Univ, Newport News, VA 23606 USA; Univ Connecticut, Storrs, CT 06269 USA; Duke Univ, Durham, NC 27708 USA; Duquesne Univ, 600 Forbes Ave, Pittsburgh, PA 15282 USA; Fairfield Univ, Fairfield, CT 06824 USA; Univ Ferrara, I-44122 Ferrara, Italy; Florida Int Univ, Miami, FL 33199 USA; Florida State Univ, Tallahassee, FL 32306 USA; George Washington Univ, Washington, DC 20052 USA; GSI Helmholtzzentrum Schwerionenforschung GmbH, D-64291 Darmstadt, Germany; INFN, Sez Ferrara, I-44100 Ferrara, Italy; INFN, Sez Genova, I-16146 Genoa, Italy; INFN, Sez Roma Tor Vergata, I-00133 Rome, Italy; INFN, Sez Torino, I-10125 Turin, Italy; INFN, Sez Pavia, I-27100 Pavia, Italy; Univ Paris, IJCLab, CNRS, IN2P3, F-91405 Orsay, France; James Madison Univ, Harrisonburg, VA 22807 USA; Kyungpook Natl Univ, Daegu 41566, South Korea; Lamar Univ, 4400 MLK Blvd, POB 10046, Beaumont, TX 77710 USA; MIT, Cambridge, MA 02139 USA; Mississippi State Univ, Mississippi State, MS 39762 USA; Univ New Hampshire, Durham, NH 03824 USA; New Mexico State Univ, POB 30001, Las Cruces, NM 88003 USA; Norfolk State Univ, Norfolk, VA 23504 USA; Ohio Univ, Athens, OH 45701 USA; Old Dominion Univ, Norfolk, VA 23529 USA; Univ Giessen, Phys Inst 2, D-35392 Giessen, Germany; Rensselaer Polytech Inst, Troy, NY 12180 USA; Univ Roma Tor Vergata, I-00133 Rome, Italy; Lomonosov Moscow State Univ, Skobeltsyn Inst Nucl Phys, Moscow 119234, Russia; Univ South Carolina, Columbia, SC 29208 USA; Temple Univ, Philadelphia, PA 19122 USA; Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA; Univ Tecn Federico Santa Maria, Casilla 110-V, Valparaiso, Chile; Univ Brescia, I-25123 Brescia, Italy; Univ Calif Riverside, 900 Univ Ave, Riverside, CA 92521 USA; Univ Richmond, Richmond, VA 23173 USA; Univ York, York YO10 5DD, N Yorkshire, England; Virginia Tech, Blacksburg, VA 24061 USA; Univ Virginia, Charlottesville, VA 22901 USA; Yerevan Phys Inst, Yerevan 375036, Armenia; Univ Durham, Informat Serv, Durham, England; King Saud Univ, Riyadh, Saudi Arabia; Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA; Idaho State Univ, Pocatello, ID 83209 USA MacGregor, Ian/D-4072-2011; Pappalardo, Luciano/AAB-2380-2021; Mascagna, Valerio/HLQ-1103-2023; Schumacher, Reinhard/K-6455-2013; Ireland, David/E-8618-2010; Alaoui, Ahmed/B-4638-2015; Isupov, Evgeny/J-2976-2012 36022213600; 35227669300; 7006927902; 8258896400; 9278396500; 36703257500; 59195107600; 7004424420; 57211254204; 35277104000; 57221249616; 57210826461; 57215197650; 23033257000; 7004520678; 57605743600; 57218527298; 7102358422; 35227021700; 57955372500; 35725064700; 7007041327; 7005532059; 35400106000; 57203690067; 56362746200; 57221140443; 7005853901; 54392656300; 57202987431; 6603765308; 35227101500; 7003468594; 59459414400; 6507987909; 59345445900; 56272524200; 6604025441; 57217562965; 35374416600; 35227159100; 35069234100; 35227171500; 26535686800; 14041647600; 57215091978; 56978985100; 59194732500; 8695796100; 57210218314; 57222285191; 35227304900; 6603686320; 57210932456; 7102183142; 7003432409; 57208726428; 56115055200; 55382488300; 57206656408; 7003821864; 57214681432; 7005060869; 35227460400; 57237808500; 59471942200; 35227429400; 57216594895; 13405022500; 35227558900; 57251793200; 57204052333; 57205462419; 6701392158; 56047689500; 56273696800; 57206742138; 7006040977; 7004889588; 22135531000; 58514101300; 57224626542; 7004546205; 12244632700; 6603294089; 57212715831; 35227746500; 35227763200; 6701825145; 57226647977; 22986163400; 7004207376; 36085149700; 35227791700; 57208699533; 56362788600; 57385323900; 57814422500; 59659779800; 35227871000; 57219768156; 57733236300; 7003515879; 59300770700; 6701495633; 7102538331; 35228024200; 57208791396; 57198983235; 7201653195; 35227996900; 15030349100; 57213706614; 16065283100; 6507906118; 57221112096; 7004491103; 22969481600; 7004321986; 57200599233; 59194916500; 57733253800; 57222078258; 35228099400; 22136651400; 6504161736; 6603350317; 7201539565; 13204321200; 58422408300; 59231464800; 36836386600; 57216598335; 57213092440 Bryan.McKinnon@glasgow.ac.uk; PHYSICAL REVIEW C PHYS REV C 2469-9985 2469-9993 111 2 SCIE PHYSICS, NUCLEAR 2024 3.4 29.5 0 2025-05-07 0 0 BREMSSTRAHLUNG English 2025 2025-02-20 10.1103/physrevc.111.025204 바로가기 바로가기 바로가기 바로가기
Article Photoproduction of two charged pions off protons in the resonance region Photoproduction of charged pions pairs off protons is studied within the invariant masses of the final state hadrons from 1.6 to 2.4 GeV at the Thomas Jefferson National Accelerator Facility with the CLAS detector. The total and differential cross sections and spin-density matrix elements are presented for the isobars rho rho(0)(770), Delta(1232)(++)pi(-), and Delta(1232)0 pi(+). The data are included in the Bonn-Gatchina coupled-channel analysis and provide the information necessary to determine the branching fractions of N rho(770) decays for most known N* and Delta* resonances. For the first time, the N rho branching ratios are obtained here from an event-based likelihood to gamma p ->pi(+)pi(-)p. Sarantsev, A. V.; Klempt, E.; Nikonov, K. V.; Achenbach, P.; Burkert, V. D.; Crede, V.; Mokeev, V.; Alvarado, J. S.; Amaryan, M. J.; Atac, H.; Baashen, L.; Baltzell, N. A.; Barion, L.; Bashkanov, M.; Battaglieri, M.; Benkel, B.; Benmokhtar, F.; Bianconi, A.; Biselli, A. S.; Bossu, F.; Boiarinov, S.; Brinkmann, K. -Th.; Briscoe, W. J.; Cao, T.; Capobianco, R.; Carman, D. S.; Carvajal, J. C.; Chatagnon, P.; Contalbrigo, M.; D'Angelo, A.; Dashyan, N.; De Vita, R.; Defurne, M.; Deur, A.; Diehl, S.; Djalali, C.; Dupre, R.; Egiyan, H.; El Alaoui, A.; El Fassi, L.; Elouadrhiri, L.; Eugenio, P.; Fegan, S.; Filippi, A.; Gates, K.; Gavalian, G.; Glazier, D. I.; Gothe, R. W.; Guo, L.; Hafidi, K.; Hakobyan, H.; Hattawy, M.; Heddle, D.; Hobart, A.; Holtrop, M.; Ilieva, Y.; Ireland, D. G.; Isupov, E. L.; Jiang, H.; Jo, H. S.; Joo, K.; Khandaker, M.; Kim, W.; Klein, F. J.; Klimenko, V.; Kripko, A.; Kubarovsky, V.; Lanza, L.; Lenisa, P.; MacGregor, I. J. D.; Martiryan, D.; Mascagna, V.; Matamoros, D.; McKinnon, B.; Mineeva, T.; Camacho, C. Munoz; Nadel-Turonski, P.; Neupane, K.; Niccolai, S.; Niculescu, G.; Osipenko, M.; Ostrovidov, A. I.; Ouillon, M.; Pandey, P.; Paolone, M.; Pappalardo, L. L.; Paul, S. J.; Pasyuk, E.; Phelps, W.; Pokhrel, M.; Rafael, S. Polcher; Price, J. W.; Prok, Y.; Radic, A.; Reed, T.; Richards, J.; Ripani, M.; Rosner, G.; Rusova, A. A.; Salgado, C.; Schadmand, S.; Schmidt, A.; Schumacher, R. A.; Sharabian, Y. G.; Shirokov, E. V.; Shrestha, S.; Sparveris, N.; Spreafico, M.; Strauch, S.; Tan, J. A.; Tyson, R.; Ungaro, M.; Venturelli, L.; Vittorini, T.; Voskanyan, H.; Voutier, E.; Watts, D.; Wei, X.; Wood, M. H.; Xu, L.; Zachariou, N.; Zhao, Z. W.; Zurek, M. Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA; Univ Bonn, Helmholtz Inst Strahlen & Kernphys, D-53115 Bonn, Germany; PNPI, NRC Kurchatov Inst, Gatchina 188300, Russia; Florida State Univ, Tallahassee, FL 32306 USA; Argonne Natl Lab, Argonne, IL 60439 USA; Calif State Univ Dominguez Hills, Carson, CA 90747 USA; Canisius Coll, Buffalo, NY 14208 USA; Carnegie Mellon Univ, Pittsburgh, PA 15213 USA; Catholic Univ Amer, Washington, DC 20064 USA; Univ Paris Saclay, IRFU, CEA, F-91191 Gif Sur Yvette, France; Christopher Newport Univ, Newport News, VA 23606 USA; Univ Connecticut, Storrs, CT 06269 USA; Duke Univ, Durham, NC 27708 USA; Duquesne Univ, 600 Forbes Ave, Pittsburgh, PA 15282 USA; Fairfield Univ, Fairfield, CT 06824 USA; Univ Ferrara, I-44121 Ferrara, Italy; Florida Int Univ, Miami, FL 33199 USA; George Washington Univ, Washington, DC 20052 USA; GSI Helmholtzzentrum Schwerionenforsch GmbH, D-64291 Darmstadt, Germany; INFN, Sez Ferrara, I-44100 Ferrara, Italy; INFN, Sez Genova, I-16146 Genoa, Italy; INFN, Sez Roma Tor Vergata, I-00133 Rome, Italy; INFN, Sez Torino, I-10125 Turin, Italy; INFN, Sez Pavia, I-27100 Pavia, Italy; Univ Paris Saclay, IJCLab, CNRS, IN2P3, F-91405 Orsay, France; James Madison Univ, Harrisonburg, VA 22807 USA; Kyungpook Natl Univ, Daegu 41566, South Korea; MIT, Cambridge, MA 02139 USA; Mississippi State Univ, Mississippi State, MS 39762 USA; Univ New Hampshire, Durham, NH 03824 USA; New Mexico State Univ, POB 30001, Las Cruces, NM 88003 USA; Norfolk State Univ, Norfolk, VA 23504 USA; Ohio Univ, Athens, OH 45701 USA; Old Dominion Univ, Norfolk, VA 23529 USA; Univ Giessen, Phys Inst 2, D-35392 Giessen, Germany; Rensselaer Polytech Inst, Troy, NY 12180 USA; Univ Roma Tor Vergata, I-00133 Rome, Italy; Lomonosov Moscow State Univ, Inst Nucl Phys, Moscow 119234, Russia; Univ South Carolina, Columbia, SC 29208 USA; Temple Univ, Philadelphia, PA 19122 USA; Univ Tecn Federico Santa Maria, Casilla 110-V, Valparaiso, Chile; Univ Brescia, I-25123 Brescia, Italy; Univ Calif Riverside, 900 Univ Ave, Riverside, CA 92521 USA; Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland; Univ York, York YO10 5DD, N Yorkshire, England; Univ Virginia, Charlottesville, VA 22901 USA; Yerevan Phys Inst, Yerevan 375036, Armenia Pappalardo, Luciano/AAB-2380-2021; Ireland, David/E-8618-2010; Mascagna, Valerio/HLQ-1103-2023; Burkert, Volker/AAF-7395-2020; Sarantsev, Andrey/R-6057-2016; MacGregor, Ian/D-4072-2011; Schumacher, Reinhard/K-6455-2013; Isupov, Evgeny/J-2976-2012 59113982100; 24280029500; 57194328600; 7004424420; 7004440244; 6602900241; 7004546205; 57211254204; 35277104000; 57210826461; 57215197650; 35226938500; 23033257000; 6506107717; 7004520678; 57605743600; 57218527298; 7102358422; 35227021700; 35725064700; 35277071300; 7007041327; 7005532059; 56362746200; 57221140443; 7005853901; 57214364802; 57202987431; 7003468594; 59459414400; 6507987909; 59345445900; 56272524200; 6604025441; 57217562965; 35374416600; 35069234100; 35227171500; 26535686800; 14041647600; 35227171600; 57215091978; 56978985100; 8695796100; 57222285191; 35227304900; 8258896400; 7102183142; 59708554300; 34570410000; 57208726428; 56115055200; 7003821864; 57214681432; 7005060869; 35227424100; 7006927902; 35227460400; 59720120300; 35227429400; 57202638465; 13405022500; 35227558900; 57251793200; 57204052333; 57205462419; 6701392158; 56047689500; 56273696800; 7006040977; 57224629726; 22135531000; 58514101300; 35227669300; 26023453000; 12244632700; 6603294089; 57212715831; 35227746500; 35227763200; 6701825145; 58304594000; 57250707600; 57226647977; 22986163400; 7004207376; 57208699533; 35227791700; 56362788600; 57814422500; 59659779800; 55329126900; 35227871000; 57994838700; 57219768156; 57733236300; 7003515879; 7102538331; 59350477100; 35228024200; 57208791396; 57198983235; 7201653195; 35227996900; 15030349100; 57218279069; 6507906118; 57221112096; 7004321986; 57200599233; 57222078258; 35228099400; 22136651400; 58538014300; 6504161736; 6603350317; 7201539565; 13204321200; 57201559118; 59231464800; 36836386600; 57216598335; 57213092440 klempt@hiskp.uni-bonn.de; PHYSICAL REVIEW C PHYS REV C 2469-9985 2469-9993 111 3 SCIE PHYSICS, NUCLEAR 2024 3.4 29.5 0 2025-05-07 0 0 PARTIAL-WAVE ANALYSIS; DOUBLE PI(0) PHOTOPRODUCTION; CROSS-SECTION MEASUREMENT; PIN -> NPIPI; NEAR-THRESHOLD; CLAS; ELECTROPRODUCTION; ENERGIES; CHAMBER; MODEL English 2025 2025-03-31 10.1103/physrevc.111.035203 바로가기 바로가기 바로가기 바로가기
Article Application of a surgical guide for the extraction of impacted mesiodens: a case series Background: Mesiodens frequently occur in an impacted state, which can hinder the eruption, growth, and development of adjacent permanent teeth. Surgical extraction is often necessary, especially in pediatric patients, where minimally invasive techniques are crucial due to their ongoing growth and development. Cases: This study presents the use of a customized surgical guide for the extraction of impacted mesiodens in pediatric patients under general anesthesia. The guide was designed to improve procedural accuracy and minimize trauma during surgery. Conclusions: The application of a customized surgical guide in pediatric oral surgery enhances precision, reduces surgical time, and improves patient outcomes. Despite certain limitations, this guide serves as a valuable tool in ensuring safer and more effective mesiodens extraction in children. Jang, Youngeun; Lee, Jaesik; Kim, Gimin Kyungpook Natl Univ, Sch Dent, Dept Pediat Dent, Daegu 41940, South Korea 59907280900; 57193887436; 57210885969 giminkim@knu.ac.kr; JOURNAL OF CLINICAL PEDIATRIC DENTISTRY J CLIN PEDIATR DENT 1053-4628 1557-5268 49 3 SCIE DENTISTRY, ORAL SURGERY & MEDICINE;PEDIATRICS 2024 2.2 29.6 0 2025-06-11 0 0 Supernumerary teeth; Cone-beam computed tomography; Surgical extraction SUPERNUMERARY TEETH; TOMOGRAPHY; ANXIETY Cone-beam computed tomography; Supernumerary teeth; Surgical extraction English 2025 2025 10.22514/jocpd.2025.068 바로가기 바로가기 바로가기 바로가기
Article A PUF-Based Secure Authentication and Key Agreement Scheme for the Internet of Drones The Internet of Drones (IoD) is an emerging industry that offers convenient services for humans due to the high mobility and flexibility of drones. The IoD substantially enhances human life by enabling diverse drone applications across various domains. However, a malicious adversary can attempt security attacks because communication within an IoD environment is conducted through public channels and because drones are vulnerable to physical attacks. In 2023, Sharma et al. proposed a physical unclonable function (PUF)-based authentication and key agreement (AKA) scheme for the IoD. Regrettably, we discover that their scheme cannot prevent impersonation, stolen verifier, and ephemeral secret leakage (ESL) attacks. Moreover, Sharma et al.'s scheme cannot preserve user untraceability and anonymity. In this paper, we propose a secure and lightweight AKA scheme which addresses the shortcomings of Sharma et al.'s scheme. The proposed scheme has resistance against diverse security attacks, including physical capture attacks on drones, by leveraging a PUF. Furthermore, we utilize lightweight operations such as hash function and XOR operation to accommodate the computational constraints of drones. The security of the proposed scheme is rigorously verified, utilizing "Burrows-Abadi-Needham (BAN) logic", "Real-or-Random (ROR) model", "Automated Validation of Internet Security Protocols and Application (AVISPA)", and informal analysis. Additionally, we compare the security properties, computational cost, communication cost, and energy consumption of the proposed scheme with other related works to evaluate performance. As a result, we determine that our scheme is efficient and well suited for the IoD. Choi, Jihye; Son, Seunghwan; Kwon, Deokkyu; Park, Youngho Kyungpook Natl Univ, Sch Elect & Elect Engn, Daegu 41566, South Korea 59552941200; 57221744477; 57221739597; 56962990300 jihye@knu.ac.kr; sonshawn@knu.ac.kr; kdk145@knu.ac.kr; parkyh@knu.ac.kr; SENSORS SENSORS-BASEL 1424-8220 25 3 SCIE CHEMISTRY, ANALYTICAL;ENGINEERING, ELECTRICAL & ELECTRONIC;INSTRUMENTS & INSTRUMENTATION 2024 3.5 29.7 3.37 2025-05-07 3 4 Internet of Drones; PUF; authentication; cryptanalysis; security MANAGEMENT PROTOCOL; IOD; ISSUES authentication; cryptanalysis; Internet of Drones; PUF; security Anonymity; Authentication; Authentication Protocol; Boolean functions; Cost benefit analysis; Network security; Authentication and key agreements; Cryptanalyze; High flexibility; High mobility; Human lives; Internet of drone; Key agreement scheme; Secure authentications; Security; Security attacks; adult; article; controlled study; cryptanalysis; drone; energy consumption; hash function; human; Internet; internet security; major clinical study; middle aged; Drones English 2025 2025-02 10.3390/s25030982 바로가기 바로가기 바로가기 바로가기
Article FDI-VSR: Video Super-Resolution Through Frequency-Domain Integration and Dynamic Offset Estimation The increasing adoption of high-resolution imaging sensors across various fields has led to a growing demand for techniques to enhance video quality. Video super-resolution (VSR) addresses this need by reconstructing high-resolution videos from lower-resolution inputs; however, directly applying single-image super-resolution (SISR) methods to video sequences neglects temporal information, resulting in inconsistent and unnatural outputs. In this paper, we propose FDI-VSR, a novel framework that integrates spatiotemporal dynamics and frequency-domain analysis into conventional SISR models without extensive modifications. We introduce two key modules: the Spatiotemporal Feature Extraction Module (STFEM), which employs dynamic offset estimation, spatial alignment, and multi-stage temporal aggregation using residual channel attention blocks (RCABs); and the Frequency-Spatial Integration Module (FSIM), which transforms deep features into the frequency domain to effectively capture global context beyond the limited receptive field of standard convolutions. Extensive experiments on the Vid4, SPMCs, REDS4, and UDM10 benchmarks, supported by detailed ablation studies, demonstrate that FDI-VSR not only surpasses conventional VSR methods but also achieves competitive results compared to recent state-of-the-art methods, with improvements of up to 0.82 dB in PSNR on the SPMCs benchmark and notable reductions in visual artifacts, all while maintaining lower computational complexity and faster inference. Lim, Donghun; Choi, Janghoon Kyungpook Natl Univ, Grad Sch Data Sci, Daegu 41566, South Korea 59756408100; 57202773325 naring@knu.ac.kr; jhchoi09@knu.ac.kr; SENSORS SENSORS-BASEL 1424-8220 25 8 SCIE CHEMISTRY, ANALYTICAL;ENGINEERING, ELECTRICAL & ELECTRONIC;INSTRUMENTS & INSTRUMENTATION 2024 3.5 29.7 0 2025-05-07 0 0 video super-resolution; dynamic offset estimation; frequency-domain integration; spatiotemporal feature extraction dynamic offset estimation; frequency-domain integration; spatiotemporal feature extraction; video super-resolution Bode diagrams; Image enhancement; Dynamic offset estimation; Features extraction; Frequency-domain integrations; Image super resolutions; Offset estimation; Resolution video; Single images; Spatiotemporal feature; Spatiotemporal feature extraction; Video super-resolution; article; benchmarking; feature extraction; human; image artifact; receptive field; sensor; videorecording; Video recording English 2025 2025-04-10 10.3390/s25082402 바로가기 바로가기 바로가기 바로가기
Article Regression-Based Docking System for Autonomous Mobile Robots Using a Monocular Camera and ArUco Markers This paper introduces a cost-effective autonomous charging docking system that utilizes a monocular camera and ArUco markers. Traditional monocular vision-based approaches, such as SolvePnP, are sensitive to viewing angles, lighting conditions, and camera calibration errors, limiting the accuracy of spatial estimation. To address these challenges, we propose a regression-based method that learns geometric features from variations in marker size and shape to estimate distance and orientation accurately. The proposed model is trained using ground-truth data collected from a LiDAR sensor, while real-time operation is performed using only monocular input. Experimental results show that the proposed system achieves a mean distance error of 1.18 cm and a mean orientation error of 3.11 degrees, significantly outperforming SolvePnP, which exhibits errors of 58.54 cm and 6.64 degrees, respectively. In real-world docking tests, the system achieves a final average docking position error of 2 cm and an orientation error of 3.07 degrees, demonstrating that reliable and accurate performance can be attained using low-cost, vision-only hardware. This system offers a practical and scalable solution for industrial applications. Oh, Jun Seok; Kim, Min Young Kyungpook Natl Univ, Sch Elect & Elect Engn, Daegu 41566, South Korea; Kyungpook Natl Univ, Sch Elect Engn, Daegu 41566, South Korea; Kyungpook Natl Univ, Res Ctr Neurosurg Robot Syst, Daegu 41566, South Korea; Kyungpook Natl Univ, KNU LG Elect Convergence Res Ctr, Daegu 41566, South Korea 59307816400; 56739349100 2025006910@knu.ac.kr; minykim@knu.ac.kr; SENSORS SENSORS-BASEL 1424-8220 25 12 SCIE CHEMISTRY, ANALYTICAL;ENGINEERING, ELECTRICAL & ELECTRONIC;INSTRUMENTS & INSTRUMENTATION 2024 3.5 29.7 0 0 monocular camera; ArUco markers; regression model; autonomous docking ArUco markers; autonomous docking; monocular camera; regression model Cameras; Docking; Errors; Mobile robots; Optical radar; Regression analysis; Vision; Aruco marker; Autonomous docking; Autonomous Mobile Robot; Cost effective; Docking system; Monocular cameras; Monocular vision; Orientation error; Regression modelling; Vision-based approaches; Cost effectiveness English 2025 2025-06-15 10.3390/s25123742 바로가기 바로가기 바로가기 바로가기
Article Security Evaluation of Provably Secure ECC-Based Anonymous Authentication and Key Agreement Scheme for IoT The proliferation of the Internet of Things (IoT) has worsened the challenge of maintaining data and user privacy. IoT end devices, often deployed in unsupervised environments and connected to open networks, are susceptible to physical tampering and various other security attacks. Thus, robust, efficient authentication and key agreement (AKA) protocols are essential to protect data privacy during exchanges between end devices and servers. The previous work in "Provably Secure ECC-Based Anonymous Authentication and Key Agreement for IoT" proposed a novel AKA scheme for secure IoT environments. They claimed their protocol offers comprehensive security features, guarding against numerous potential flaws while achieving session key security. However, this paper demonstrates through logical and mathematical analyses that the previous work is vulnerable to various attacks. We conducted a security analysis using the extended Canetti and Krawczyk (eCK) model, which is widely employed in security evaluations. This model considers scenarios where an attacker has complete control over the network, including the ability to intercept, modify, and delete messages, while also accounting for the potential exposure of ephemeral private keys. Furthermore, we show that their scheme fails to meet critical security requirements and relies on flawed security assumptions. We prove our findings using the automated validation of internet security protocols and applications, a widely recognized formal verification tool. To strengthen attack resilience, we propose several recommendations for the advancement of more robust and efficient AKA protocols specifically designed for IoT environments. Park, Kisung; Kim, Myeonghyun; Park, Youngho Gachon Univ, Dept Comp Engn Smart Secur, Seongnam 13120, South Korea; Elect & Telecommun Res Inst, Syst Secur Res Sect, Daejeon 34129, South Korea; Kyungpook Natl Univ, Sch Elect & Elect Engn, Daegu 41566, South Korea ; Park, Kisung/KIG-3849-2024 57194833768; 57210278739; 56962990300 kisung@gachon.ac.kr; kimmh12@etri.re.kr; parkyh@knu.ac.kr; SENSORS SENSORS-BASEL 1424-8220 25 1 SCIE CHEMISTRY, ANALYTICAL;ENGINEERING, ELECTRICAL & ELECTRONIC;INSTRUMENTS & INSTRUMENTATION 2024 3.5 29.7 0 2025-05-07 0 0 security analysis; Internet of Things; security attacks; session key security PROTOCOL Internet of Things; security analysis; security attacks; session key security Anonymity; Differential privacy; Anonymous authentication; Authentication and key agreements; End-devices; Key agreement scheme; Provably secure; Security analysis; Security attacks; Security evaluation; Session key; Session key security; article; data privacy; electric potential; human; internet of things; internet security; mathematical analysis; privacy; security; Authentication Protocol English 2025 2025-01 10.3390/s25010237 바로가기 바로가기 바로가기 바로가기
Article Comparative transcriptomic analysis reveals the role of signal transduction and cell wall stabilization in cold tolerance of 'Chamnok' and 'Keumsull' tea plants Tea plants (Camellia sinensis), cultivated in temperate regions, are vulnerable to cold stress, which can cause significant damage during winter. This study investigates the cold stress responses of two tea cultivars, 'Chamnok' and 'Keumsull', specifically bred for cultivation in these regions. Following exposure to -5 degrees C for 12 h, physiological responses were assessed through changes in leaf color, electrolyte leakage, and chlorophyll fluorescence. To elucidate the molecular responses, RNA-seq analysis was conducted to identify differentially expressed genes (DEGs). These DEGs were further explored using clustering analysis and KEGG annotation. 'Keumsull' exhibited lower stress-condition at leaf color and chlorophyll fluorescence than 'Chamnok'. Less electrolyte leakage of 'Keumsull' are lower indicating cell structures would more stabilized. In transcriptome analysis, DEGs in the third cluster, associated with crucial pathways such as "MAPK signaling pathway - plant", "plant hormone signal transduction", and "alpha-linolenic acid metabolism", were upregulated in 'Keumsull' and downregulated in 'Chamnok'. Weighted gene co-expression network analysis corroborated the association of these DEGs with cell wall stabilization and signal transduction. These findings provide valuable insights into the cold-stress response mechanisms in tea cultivars developed for temperate regions, laying a theoretical groundwork for the future development of more cold-tolerant tea cultivars. Lee, So Jin; Chung, Sun Woo; Kwon, Yonghee; Kang, Suyoung; Moon, Doo-Gyung; Ban, Seunghyun; Choi, Cheol Natl Inst Hort & Herbal Sci, Rural Dev Adm, Res Inst Climate Change & Agr, Jeju 63240, South Korea; Kyungpook Natl Univ, Coll Agr & Life Sci, Daegu 41566, South Korea ; Chung, Sunwoo/HLP-7160-2023 55870334800; 57388115400; 56805929800; 57201216862; 7202057864; 56482835300; 50261314300 dlthwls324@korea.kr; jsw599@korea.kr; kwon7946@korea.kr; kangsuyoung@korea.kr; dgmoon@korea.kr; sh@knu.ac.kr; cc31@knu.ac.kr; HORTICULTURE ENVIRONMENT AND BIOTECHNOLOGY HORTIC ENVIRON BIOTE 2211-3452 2211-3460 66 1 SCIE HORTICULTURE 2024 2.4 30.0 0 2025-05-07 0 0 Abiotic stress; Camellia sinensis; DEG; RNA-seq; Temperature; Temperate region; WGCNA ALLENE OXIDE CYCLASE; BETA-AMYLASE; CAMELLIA-SINENSIS; GENE-EXPRESSION; STRESS; ACCLIMATION; RESPONSES; INSIGHTS; L. Abiotic stress; Camellia sinensis; DEG; RNA-seq; Temperate region; Temperature; WGCNA English 2025 2025-02 10.1007/s13580-024-00636-0 바로가기 바로가기 바로가기 바로가기
Article Development of a strawberry transpiration model based on a simplified Penman-Monteith model under different irrigation regimes Strawberries are water-intensive crops, rendering irrigation management critical for their cultivation. This study comprehensively examined the dynamics of the leaf area index (LAI), transpiration rate, and plant biomass distribution in strawberry cultivation under contrasting irrigation regimes (full [FI] and deficit [DI] irrigation) within a greenhouse environment. By integrating certain parameters, such as solar radiation (Rad), vapor pressure deficit (VPD), and the LAI, we developed a modified Penman-Monteith equation tailored for the soilless cultivation of strawberries. The study utilized direct measurement techniques including soil and plant sensors to quantify the effects of environmental conditions on transpiration. The results indicated that the modified models, which incorporated adjustments for VPD and both Rad and VPD, provided accurate transpiration estimates, with the optimized models' regression coefficients being notably high in both the FI and DI regimes. Additionally, the results revealed substantial variation in plant biomass partitioning between the two irrigation regimes, suggesting that strategic water management can significantly impact plant structure and productivity. This study underscores the importance of precise irrigation scheduling to enhance water use efficiency and fruit quality in controlled horticultural systems. Sim, Ha Seon; Jo, Jung Su; Moon, Yu Hyun; Jung, Soo Bin; Lee, Tae Yeon; Shin, Ha Rang; Kim, Yong Jun; Kim, Na Kyong; Kim, Sung Kyeom Kyungpook Natl Univ, Coll Agr & Sci, Dept Hort Sci, Daegu 41566, South Korea; Chonnam Natl Univ, Coll Agr & Life Sci, Dept Hort, Gwangju 61186, South Korea; Kyungpook Natl Univ, World Horti Ctr, Sangju 37224, South Korea Kim, Sung Kyeom/AAD-9230-2019; Kim, Na Kyong/IZE-7559-2023 57220890640; 59477458800; 57226272477; 57474949700; 58069843600; 58069726600; 59546280300; 59546191000; 50262290200 skkim76@knu.ac.kr; HORTICULTURE ENVIRONMENT AND BIOTECHNOLOGY HORTIC ENVIRON BIOTE 2211-3452 2211-3460 66 3 SCIE HORTICULTURE 2024 2.4 30.0 0 2025-05-07 0 0 Greenhouse irrigation management; Leaf area index; Solar radiation; Transpiration rate analysis; Vapor pressure deficit WATER-USE EFFICIENCY; ZEA-MAYS L.; SHOOT GROWTH; MAIZE; YIELD; EVAPOTRANSPIRATION; CULTIVARS; NITROGEN; PLANTS; CORN Greenhouse irrigation management; Leaf area index; Solar radiation; Transpiration rate analysis; Vapor pressure deficit English 2025 2025-06 10.1007/s13580-025-00677-z 바로가기 바로가기 바로가기 바로가기
Article Exploration of cytogenetic traits of Allium species endemic to Korea for novel ornamental cultivar breeding using FISH technique and RAPD markers This study performed a comprehensive cytogenetic and phylogenetic analysis of 12 Korean endemic Allium taxa to provide a foundation for ornamental breeding. Ribosomal DNA (rDNA) loci mapping via fluorescence in situ hybridization (FISH) revealed conserved 45 S rDNA loci patterns but highly variable 5 S rDNA loci distributions, reflecting dynamic chromosomal evolution. Chromosome counting identified eight diploid (2n = 2x = 16) and four tetraploid (2n = 4x = 32) taxa, with B chromosomes detected in A. longistylum and two A. thunbergii varieties. Phylogenetic analyses combining RAPD markers and rDNA loci patterns elucidated genetic relationships and hybridization potential among taxa. Promising breeding traits, including extended blooming periods, vibrant flower colors, and diverse leaf morphologies, were identified in taxa such as A. thunbergii and A. senescens. These findings demonstrate the utility of integrating molecular and cytogenetic data in selecting compatible parental lines and designing breeding strategies. This study provides a robust framework for developing novel ornamental Allium cultivars with improved genetic diversity and aesthetic value. Future research should explore the inheritance of key traits and apply advanced genomic tools to optimize hybridization outcomes. Kang, Ji-Yun; Kang, Moon-Seok; Seo, Eun-Jae; Hwang, Yoon-Jung; Yoon, Mijeong; Jang, Bo-Kook; Cho, Wonwoo; Lim, Ki-Byung; Ahn, Yun-Jae Kyungpook Natl Univ, Dept Hort Sci, Daegu 41566, South Korea; Kyungpook Natl Univ, Inst Agr Sci & Technol, Daegu 41566, South Korea; Sahmyook Univ, Dept Convergence Sci, Seoul 01795, South Korea; Korea Natl Arboretum, Garden & Plant Resources Div, Pochon 11186, South Korea; Sunchon Natl Univ, Dept Hort, Sunchon 57922, South Korea Ahn, Yun-Jae/HII-3425-2022 59320780000; 59680763600; 59681786700; 50061210800; 58095382900; 57203308403; 59682542900; 7403175915; 57196473453 yjahn0121@knu.ac.kr; HORTICULTURE ENVIRONMENT AND BIOTECHNOLOGY HORTIC ENVIRON BIOTE 2211-3452 2211-3460 66 3 SCIE HORTICULTURE 2024 2.4 30.0 0 2025-05-07 0 0 Cytogenetics; Endemic species; Fluorescence in situ hybridization; Karyotype; Ornamental Allium IN-SITU HYBRIDIZATION; RIBOSOMAL DNA; LILIUM; AMARYLLIDACEAE; PHYLOGENY; DIVERSITY; ALLIACEAE; 5S; CLASSIFICATION; IDENTIFICATION Cytogenetics; Endemic species; Fluorescence in situ hybridization; Karyotype; Ornamental Allium English 2025 2025-06 10.1007/s13580-025-00696-w 바로가기 바로가기 바로가기 바로가기
Article Investigation of radiation-induced luminescence properties of high-density barium phosphate glasses doped with Ce³⁺ The Ce3+ doped barium-zinc-gadolinium-phosphate glass samples with composition 20BaCO3-10ZnO-8Gd2O3- (62- x )P 2 O 5- x CeBr3 (where x = 0.15, 0.25, 0.5, and 0.75 mol.%) were fabricated by employing melt-quenching traditional method. The PXRD studies were performed to verify the amorphous form of the fabricated glasses. FESEM was utilised to check the particle size and shape of prepared samples. The measurements of EDS were employed to find out the elements available in the glasses. Wideband emission was observed in the 300-400 nm range in the obtained spectra under X-ray and UV-VIS excitations, revealing a 5d-4f transition of Ce3+-ions. The detected excitation bands found broad for prepared glasses include 4f electronic energy level transitions belonging to Gd3+ and the 5d electronic energy levels belonging to the Ce3+ excitation energy band situated at 308 nm. The scintillation property was investigated with alpha-particles and gamma-rays excitations using 241 Am and 137 Cs, 22 Na radiation sources, respectively. The lifetime of the prepared glass samples was studied under 286 nm UV excitation and found 28.94 +/- 0.12 ns as a short component and 166.47 +/- 23.44 ns long component with 85 % and 15 % contributions, respectively for PBZG-0.25Ce glass sample. Ntarisa, Amos Vincent; Saha, Sudipta; Quang, Nguyen Duy; Cheewasukhanont, W.; Anjum, Faizan; Intachai, N.; Ruangtaweep, Y.; Kim, H. J.; Kothan, S.; Kaewkhao, J. Univ Dar es Salaam, Mkwawa Univ Coll Educ, Dept Math Phys & Informat, POB 2513, Iringa 2513, Tanzania; Bangladesh Atom Energy Commiss, Inst Nucl Sci & Technol, Dhaka 1349, Bangladesh; Kyungpook Natl Univ, Dept Phys Educ, Daegu 41566, South Korea; Chiang Mai Univ, Fac Associated Med Sci, Ctr Radiat Res & Med Imaging, Dept Radiol Technol, Chiang Mai 50200, Thailand; Chiang Mai Univ, Off Res Adm, Chiang Mai 50200, Thailand; Nakhon Pathom Rajabhat Univ, Ctr Excellence Glass Technol & Mat Sci CEGM, Nakhon Pathom 73000, Thailand; Dalat Nucl Res Inst, Da Lat 670000, Vietnam Ntarisa, Amos Vincent/JWO-6086-2024; Intachai, Nuttawadee/HOH-1735-2023; Ntarisa, Amos/JWO-6086-2024 57160289700; 55935496600; 57223004024; 57118163600; 57219469502; 57221909427; 37108588700; 58483690400; 6507017165; 23974520300 amos.ntarisa@udsm.ac.tz; sudipta.sust@baec.gov.bd; jakrapong@webmail.npru.ac.th; JOURNAL OF LUMINESCENCE J LUMIN 0022-2313 1872-7883 277 SCIE OPTICS 2024 3.6 30.0 3.17 2025-05-07 1 1 Barium phosphate glasses; Luminescence; Decay time; Radiation; FTIR EMISSION Barium phosphate glasses; Decay time; FTIR; Luminescence; Radiation Excitation energy; Scintillation; Barium phosphate; Barium phosphate glass; Ce 3+; Decay time; Electronic energy levels; FTIR; Glass samples; Luminescence properties; Phosphate glass; Radiation-induced luminescence; Gamma rays English 2025 2025-01 10.1016/j.jlumin.2024.120981 바로가기 바로가기 바로가기 바로가기
페이지 이동: