2022 연구성과 (6 / 280)

※ 컨트롤 + 클릭으로 열별 다중 정렬 가능합니다.
Excel 다운로드
WoS SCOPUS Document Type Document Title Abstract Authors Affiliation ResearcherID (WoS) AuthorsID (SCOPUS) Author Email(s) Journal Name JCR Abbreviation ISSN eISSN Volume Issue WoS Edition WoS Category JCR Year IF JCR (%) FWCI FWCI Update Date WoS Citation SCOPUS Citation Keywords (WoS) KeywordsPlus (WoS) Keywords (SCOPUS) KeywordsPlus (SCOPUS) Language Publication Stage Publication Year Publication Date DOI JCR Link DOI Link WOS Link SCOPUS Link
Article A Reference Vector-Based Simplified Covariance Matrix Adaptation Evolution Strategy for Constrained Global Optimization During the last two decades, the notion of multiobjective optimization (MOO) has been successfully adopted to solve the nonconvex constrained optimization problems (COPs) in their most general forms. However, such works mainly utilized the Pareto dominance-based MOO framework while the other successful MOO frameworks, such as the reference vector (RV) and the decomposition-based ones, have not drawn sufficient attention from the COP researchers. In this article, we utilize the concepts of the RV-based MOO to design a ranking strategy for the solutions of a COP. We first transform the COP into a biobjective optimization problem (BOP) and then solve it by using the covariance matrix adaptation evolution strategy (CMA-ES), which is arguably one of the most competitive evolutionary algorithms of current interest. We propose an RV-based ranking strategy to calculate the mean and update the covariance matrix in CMA-ES. Besides, the RV is explicitly tuned during the optimization process based on the characteristics of COPs in a RV-based MOO framework. We also propose a repair mechanism for the infeasible solutions and a restart strategy to facilitate the population to escape from the infeasible region. We test the proposal extensively on two well-known benchmark suites comprised of 36 and 112 test problems (at different scales) from the IEEE CEC (Congress on Evolutionary Computation) 2010 and 2017 competitions along with a real-world problem related to power flow. Our experimental results suggest that the proposed algorithm can meet or beat several other state-of-the-art constrained optimizers in terms of the performance on a wide variety of problems. Kumar, Abhishek; Das, Swagatam; Mallipeddi, Rammohan Indian Inst Technol Varanasi, Dept Elect Engn, Varanasi 221005, Uttar Pradesh, India; Indian Stat Inst, Elect & Commun Sci Unit, Kolkata 700108, India; Kyungpook Natl Univ, Coll IT Engn, Dept Artificial Intelligence, Daegu 41566, South Korea Mallipeddi, Rammohan/AAL-5306-2020; Kumar, Abhishek/ABA-5251-2021; Das, Swagatam/AAG-6753-2019 57206266703; 24729258600; 25639919900 abhishek.kumar.eee13@iitbhu.ac.in;swagatam.das@isical.ac.in;mallipeddi@knu.ac.kr; IEEE TRANSACTIONS ON CYBERNETICS IEEE T CYBERNETICS 2168-2267 2168-2275 52 5 SCIE AUTOMATION & CONTROL SYSTEMS;COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE;COMPUTER SCIENCE, CYBERNETICS 2022 11.8 2.1 1.97 2025-06-25 33 29 Optimization; Covariance matrices; Maintenance engineering; Benchmark testing; Decision feedback equalizers; Evolutionary computation; Cybernetics; Constrained optimization; covariance matrix adaptation evolution strategy (CMA-ES); multiobjective optimization (MOO); reference vector-based ranking (RVRanking) strategy LOAD FLOW METHOD; DIFFERENTIAL EVOLUTION; PENALTY-FUNCTION; HANDLING METHOD; ALGORITHMS; FORMULATION Constrained optimization; covariance matrix adaptation evolution strategy (CMA-ES); multiobjective optimization (MOO); reference vector-based ranking (RVRanking) strategy Algorithms; Biological Evolution; Covariance matrix; Electric load flow; Evolutionary algorithms; Global optimization; Multiobjective optimization; Constrained global optimization; Constrained optimi-zation problems; Covariance matrix adaptation evolution strategies; Covariance matrix adaptation evolution strategy; Multi-objectives optimization; Multiobjective optimization; Nonconvex; Optimization framework; Reference vector-based rvranking strategy; Reference vectors; algorithm; evolution; Constrained optimization English 2022 2022-05 10.1109/tcyb.2020.3013950 바로가기 바로가기 바로가기 바로가기
Review Catalyst activation: Surface doping effects of group VI transition metal dichalcogenides towards hydrogen evolution reaction in acidic media Two-dimensional (2D) transition metal dichalcogenides (TMDs) have emerged as promising alternatives to the platinum-based catalysts for hydrogen evolution reaction (HER). The edge site of these 2D materials exhibits HER-active properties, whereas the large-area basal plane is inactive. Therefore, recent studies and methodologies have been investigated to improve the performance of TMD-based materials by activating inactive sites through elemental doping strategies. In this review, we focus on the metal and non-metal dopant effects on group VI TMDs such as MoS2, MoSe2, WS2, and WSe2 for promoting HER performances in acidic electrolytes. A general introduction to the HER is initially provided to explain the parameters in accessing the catalytic performance of doped-TMDs. Then, synthetic methods for dopedTMDs and their HER performances are introduced in order to understand the effect of various dopants including metallic and non-metallic elements. Finally, the current challenges and future opportunities are summarized to provide insights into developing highly active and stable doped-TMD materials and valuable guidelines for engineering TMD-based nanocatalysts for practical water splitting technologies. (c) 2022 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Publishedby ELSEVIER B.V. and Science Press. All rights reserved. Ruqia, Bibi; Kabiraz, Mrinal Kanti; Hong, Jong Wook; Choi, Sang-Il Kyungpook Natl Univ, Green Nano Mat Res Ctr, Daegu 41566, South Korea; Kyungpook Natl Univ, Dept Hydrogen & Renewable Energy, Daegu 41566, South Korea; Univ Ulsan, Dept Chem, Ulsan 44776, South Korea; Kyungpook Natl Univ, Dept Chem, Daegu 41566, South Korea Choi, Sang-Il/N-7571-2013; Kabiraz, Mrinal/AAE-6381-2020; Ruqia, Bibi/AAR-4698-2020; Choi, Sang-Il/AGR-1133-2022 56850407000; 57759968500; 57215820078; 56167600800 jwhong@ulsan.ac.kr;sichoi@knu.ac.kr; JOURNAL OF ENERGY CHEMISTRY J ENERGY CHEM 2095-4956 72 SCIE CHEMISTRY, APPLIED;CHEMISTRY, PHYSICAL;ENERGY & FUELS;ENGINEERING, CHEMICAL 2022 13.1 2.1 1.22 2025-06-25 47 50 2D materials; Transition metal dichalcogenides; Dopant effect; Catalytic surface; Hydrogen evolution reaction REDUCED GRAPHENE OXIDE; DOPED MOSE2 NANOSHEETS; ACTIVE EDGE SITES; ULTRATHIN NANOSHEETS; WS2 NANOSHEETS; EFFICIENT; CO; PERFORMANCE; PHASE; ELECTROCATALYSTS 2D materials; Catalytic surface; Dopant effect; Hydrogen evolution reaction; Transition metal dichalcogenides Chemical activation; Hydrogen; Layered semiconductors; Molybdenum compounds; Nanocatalysts; Selenium compounds; Surface reactions; Tungsten compounds; 2d material; Catalyst activation; Catalytic surfaces; Dichalcogenides; Dopants effects; Doping effects; Hydrogen evolution reactions; Reaction performance; Surface doping; Transition metal dichalcogenides; Transition metals English 2022 2022-09 10.1016/j.jechem.2022.04.023 바로가기 바로가기 바로가기 바로가기
Editorial Material Comment on "Pushing the frontiers of density functionals by solving the fractional electron problem" COMMENT Kirkpatrick et al. (Reports, 9 December 2021, p. 1385) trained a neural network-based DFT functional, DM21, on fractional-charge (FC) and fractional-spin (FS) systems, and they claim that it has outstanding accuracy for chemical systems exhibiting strong correlation. Here, we show that the ability of DM21 to generalize the behavior of such systems does not follow from the published results and requires revisiting. Gerasimov, Igor S.; Losev, Timofey, V; Epifanov, Evgeny Yu; Rudenko, Irina; Bushmarinov, Ivan S.; Ryabov, Alexander A.; Zhilyaev, Petr A.; Medvedev, Michael G. Kyungpook Natl Univ, Dept Chem, Daegu 41566, South Korea; Russian Acad Sci, ND Zelinsky Inst Organ Chem, Moscow 119991, Russia; Lomonosov Moscow State Univ, Dept Chem, Moscow 119991, Russia; Natl Res Univ, Higher Sch Econ, Moscow 101000, Russia; Yandex, Moscow 119021, Russia; State Univ, Moscow Inst Phys & Technol, Dolgoprudnyi 141700, Moscow Region, Russia; Skolkovo Inst Sci & Technol, Ctr Mat Technol, Moscow 143026, Russia Bushmarinov, Ivan/IYJ-3955-2023; Gerasimov, Igor/F-9147-2017; Ryabov, Alexander/AAZ-9857-2020; Medvedev, Michael/N-3097-2016; Losev, Timofey/HMU-9530-2023 57202258853; 57211056433; 57831025900; 57210645959; 8138490000; 57216799535; 35326075000; 56601165300 i.s.ger@yandex.ru;bush-i@yandex.ru;ryabov.alexandr@phystech.edu;p.zhilyaev@skoltech.ru;medvedev.m.g@gmail.com; SCIENCE SCIENCE 0036-8075 1095-9203 377 6606 SCIE MULTIDISCIPLINARY SCIENCES 2022 56.9 2.1 0.34 2025-06-25 10 10 THERMOCHEMISTRY; ACCURATE; KINETICS Electrons; Quantum Theory; accuracy assessment; artificial neural network; correlation; electron; review; electron; quantum theory English 2022 2022-08-05 10.1126/science.abq3385 바로가기 바로가기 바로가기 바로가기
Article Enhanced stability and rate performance of zinc-doped cobalt hexacyanoferrate (CoZnHCF) by the limited crystal growth and reduced distortion Cobalt hexacyanoferrate (CoHCF) is a potential cathode for aqueous Na-ion batteries due to its high theoretical specific capacity (170 mAh g(-1)); however, its lower rate capability and cyclability limit its applications. Structural distortion at a weak N-coordinated crystal field during cycling disintegrates Co, yielding an irreversible reaction. Different Zn amounts ranging 0-1 were added to the Co site to suppress the structural irreversibility of CoHCF, yielding Co1-xZnxHCF powder; this Zn (x <= 0.09) addition reduced the powder's dimension because the lower four coordination of Zn-N, not the six coordination of Co-N, limits the powder growth. Simultaneously, a small lattice parameter and interaxial angle (similar to 90 degrees) are obtained, implying that a narrower Co1-xZnxHCF inner structure is formed to accommodate Na ions. Moreover, the electronic conductivity of Co1-xZnxHCF gradually increased within 0-0.09 range. A smaller particle size with a high surface area leads to a near-surface-limited redox process, similar to a capacitive reaction. Both the surface-limited reaction and electronic conductivity enhances the reversibility due to the smaller charge transfer resistance at the electrode/electrolyte interface caused by Zn addition. Replacing redox-active Co with non-active Zn amount of 0.07 (Co0.93Zn0.07HCF) slightly reduces the specific capacity from 127 to 119 mAh g(-1) at 0.1 A g(-1) due to the shrunken Co charging sites. Rate performance is enhanced by compromising the capacity and reduced distortion, resulting in 81% retention at a 20 times-faster charging rate. Notably, the Co0.93Zn0.07HCF sample exhibited the good stability while preserving 74% of the initial capacity at 0.5 A g(-1) after 200 cycles. (c) 2022 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences Published by Elsevier B.V. All rights reserved. Kim, Jihwan; Yi, Seong-Hoon; Li, Li; Chun, Sang-Eun Kyungpook Natl Univ, Sch Mat Sci & Engn, Daegu 41566, South Korea; Northeastern Univ, State Key Lab Rolling & Automat, Shenyang 110819, Liaoning, Peoples R China; Northeastern Univ, Sch Met, Shenyang 110819, Liaoning, Peoples R China; Kyungpook Natl Univ, Sch Ind Technol Adv, Daegu 41566, South Korea Yi, Seonghoon/HGC-6912-2022; Li, Li/ABF-1706-2020 58743659700; 14008383000; 56122801700; 36801080300 lilicmu@alumni.cmu.edu;sangeun@knu.ac.kr; JOURNAL OF ENERGY CHEMISTRY J ENERGY CHEM 2095-4956 69 SCIE CHEMISTRY, APPLIED;CHEMISTRY, PHYSICAL;ENERGY & FUELS;ENGINEERING, CHEMICAL 2022 13.1 2.1 1.77 2025-06-25 26 25 Cobalt hexacyanoferrate; Rate capability; Stability; Growth limitation; Structural distortion; Near-surface-limited redox process PRUSSIAN BLUE ANALOGS; AQUEOUS SODIUM; ELECTROCHEMICAL PROPERTIES; ELECTRODE MATERIALS; CATHODE MATERIALS; SUPERIOR CATHODE; HIGH-CAPACITY; LOW-COST; ION; REDOX Cobalt hexacyanoferrate; Growth limitation; Near-surface-limited redox process; Rate capability; Stability; Structural distortion Charge transfer; Charging (batteries); Cobalt; Coordination reactions; Crystal growth; Electrodes; Iron compounds; Particle size; Redox reactions; Surface reactions; Zinc; Zinc compounds; Cobalt hexacyanoferrate; Electronic conductivity; Growth limitations; Near surfaces; Near-surface-limited redox process; Rate capabilities; Rate performance; Redox process; Specific capacities; Structural distortions; Electric conductivity English 2022 2022-06 10.1016/j.jechem.2022.01.034 바로가기 바로가기 바로가기 바로가기
Article High-precision measurement of the W boson mass with the CDF II detector The mass of the W boson, a mediator of the weak force between elementary particles, is tightly constrained by the symmetries of the standard model of particle physics. The Higgs boson was the last missing component of the model. After observation of the Higgs boson, a measurement of the W boson mass provides a stringent test of the model. We measure the W boson mass, M-W, using data corresponding to 8.8 inverse femtobarns of integrated luminosity collected in proton-antiproton collisions at a 1.96 tera-electron volt center-of-mass energy with the CDF II detector at the Fermilab Tevatron collider. A sample of approximately 4 million W boson candidates is used to obtain M-W = 80,433.5 +/- 6.4(stat) +/- 6.9(syst) = 80,433.5 +/- 9.4MeV/c(2), the precision of which exceeds that of all previous measurements combined (stat, statistical uncertainty; syst, systematic uncertainty; MeV, mega-electron volts; c, speed of light in a vacuum). This measurement is in significant tension with the standard model expectation. Aaltonen, T.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J. A.; Arisawa, T.; Artikov, A.; Asaadi, J.; Ashmanskas, W.; Auerbach, B.; Aurisano, A.; Azfar, F.; Badgett, W.; Bae, T.; Barbaro-Galtieri, A.; Barnes, V. E.; Barnett, B. A.; Barria, P.; Bauce, M.; Bedeschi, F.; Behari, S.; Bellettini, G.; Bellinger, J.; Benjamin, D.; Beretvas, A.; Bhatti, A.; Bland, K. R.; Blumenfeld, B.; Bocci, A.; Bodek, A.; Bortoletto, D.; Boudreau, J.; Boveia, A.; Brigliadori, L.; Bromberg, C.; Brucken, E.; Budagov, J.; Budd, H. S.; Burkett, K.; Busetto, G.; Bussey, P.; Butti, P.; Buzatu, A.; Calamba, A.; Camarda, S.; Campanelli, M.; Carls, B.; Carlsmith, D.; Carosi, R.; Carrillo, S.; Casal, B.; Casarsa, M.; Castro, A.; Catastini, P.; Cauz, D.; Cavaliere, V; Cerri, A.; Cerrito, L.; Chen, Y. C.; Chertok, M.; Chiarelli, G.; Chlachidze, G.; Cho, K.; Chokheli, D.; Clark, A.; Clarke, C.; Convery, M. E.; Conway, J.; Corbo, M.; Cordelli, M.; Cox, C. A.; Cox, D. J.; Cremonesi, M.; Cruz, D.; Cuevas, J.; Culbertson, R.; D'Ascenzo, N.; Datta, M.; de Barbaro, P.; Demortier, L.; Deninno, M.; D'Errico, M.; Devoto, F.; Di Canto, A.; Di Ruzza, B.; Dittmann, J. R.; Donati, S.; D'Onofrio, M.; Dorigo, M.; Driutti, A.; Ebina, K.; Edgar, R.; Elagin, A.; Erbacher, R.; Errede, S.; Esham, B.; Farrington, S.; Fernandez Ramos, J. P.; Field, R.; Flanagan, G.; Forrest, R.; Franklin, M.; Freeman, J. C.; Frisch, H.; Funakoshi, Y.; Galloni, C.; Garfinkel, A. F.; Garosi, P.; Gerberich, H.; Gerchtein, E.; Giagu, S.; Giakoumopoulou, V; Gibson, K.; Ginsburg, C. M.; Giokaris, N.; Giromini, P.; Glagolev, V; Glenzinski, D.; Gold, M.; Goldin, D.; Golossanov, A.; Gomez, G.; Gomez-Ceballos, G.; Goncharov, M.; Gonzalez Lopez, O.; Gorelov, I; Goshaw, A. T.; Goulianos, K.; Gramellini, E.; Grosso-Pilcher, C.; da Costa, J. Guimaraes; Hahn, S. R.; Han, J. Y.; Happacher, F.; Hara, K.; Hare, M.; Harr, R. F.; Harrington-Taber, T.; Hatakeyama, K.; Hays, C.; Heinrich, J.; Herndon, M.; Hocker, A.; Hong, Z.; Hopkins, W.; Hou, S.; Hughes, R. E.; Husemann, U.; Hussein, M.; Huston, J.; Introzzi, G.; Iori, M.; Ivanov, A.; James, E.; Jang, D.; Jayatilaka, B.; Jeon, E. J.; Jindariani, S.; Jones, M.; Joo, K. K.; Jun, S. Y.; Junk, T. R.; Kambeitz, M.; Kamon, T.; Karchin, P. E.; Kasmi, A.; Kato, Y.; Ketchum, W.; Keung, J.; Kilminster, B.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, M. J.; Kim, S. H.; Kim, S. B.; Kim, Y. J.; Kim, Y. K.; Kimura, N.; Kirby, M.; Kondo, K.; Kong, D. J.; Konigsberg, J.; Kotwal, A., V; Kreps, M.; Kroll, J.; Kruse, M.; Kuhr, T.; Kurata, M.; Laasanen, A. T.; Lammel, S.; Lancaster, M.; Lannon, K.; Latino, G.; Lee, H. S.; Lee, J. S.; Leo, S.; Leone, S.; Lewis, J. D.; Limosani, A.; Lipeles, E.; Lister, A.; Liu, Q.; Liu, T.; Lockwitz, S.; Loginov, A.; Lucchesi, D.; Luca, A.; Lueck, J.; Lujan, P.; Lukens, P.; Lungu, G.; Lys, J.; Lysak, R.; Madrak, R.; Maestro, P.; Malik, S.; Manca, G.; Manousakis-Katsikakis, A.; Marchese, L.; Margaroli, F.; Marino, P.; Matera, K.; Mattson, M. E.; Mazzacane, A.; Mazzanti, P.; McNulty, R.; Mehta, A.; Mehtala, P.; Menzione, A.; Mesropian, C.; Miao, T.; Michielin, E.; Mietlicki, D.; Mitra, A.; Miyake, H.; Moed, S.; Moggi, N.; Moon, C. S.; Moore, R.; Morello, M. J.; Mukherjee, A.; Muller, Th; Murat, P.; Mussini, M.; Nachtman, J.; Nagai, Y.; Naganoma, J.; Nakano, I; Napier, A.; Nett, J.; Nigmanov, T.; Nodulman, L.; Noh, S. Y.; Norniella, O.; Oakes, L.; Oh, S. H.; Oh, Y. D.; Okusawa, T.; Orava, R.; Ortolan, L.; Pagliarone, C.; Palencia, E.; Palni, P.; Papadimitriou, V; Parker, W.; Pauletta, G.; Paulini, M.; Paus, C.; Phillips, T. J.; Piacentino, G.; Pianori, E.; Pilot, J.; Pitts, K.; Plager, C.; Pondrom, L.; Poprocki, S.; Potamianos, K.; Pranko, A.; Prokoshin, F.; Ptohos, F.; Punzi, G.; Redondo Fernandez, I; Renton, P.; Rescigno, M.; Rimondi, F.; Ristori, L.; Robson, A.; Rodriguez, T.; Rolli, S.; Ronzani, M.; Roser, R.; Rosner, J. L.; Ruffini, F.; Ruiz, A.; Russ, J.; Rusu, V; Sakumoto, W. K.; Sakurai, Y.; Santi, L.; Sato, K.; Saveliev, V; Savoy-Navarro, A.; Schlabach, P.; Schmidt, E. E.; Schwarz, T.; Scodellaro, L.; Scuri, F.; Seidel, S.; Seiya, Y.; Semenov, A.; Sforza, F.; Shalhout, S. Z.; Shears, T.; Shepard, P. F.; Shimojima, M.; Shochet, M.; Shreyber-Tecker, I; Simonenko, A.; Sliwa, K.; Smith, J. R.; Snider, F. D.; Song, H.; Sorin, V; St Denis, R.; Stancari, M.; Stentz, D.; Strologas, J.; Sudo, Y.; Sukhanov, A.; Suslov, I; Takemasa, K.; Takeuchi, Y.; Tang, J.; Tecchio, M.; Teng, P. K.; Thom, J.; Thomson, E.; Thukral, V; Toback, D.; Tokar, S.; Tollefson, K.; Tomura, T.; Torre, S.; Torretta, D.; Totaro, P.; Trovato, M.; Ukegawa, F.; Uozumi, S.; Vazquez, F.; Velev, G.; Vellidis, K.; Vernieri, C.; Vidal, M.; Vilar, R.; Vizan, J.; Vogel, M.; Volpi, G.; Wagner, P.; Wallny, R.; Wang, S. M.; Waters, D.; Wester, W. C., III; Whiteson, D.; Wicklund, A. B.; Wilbur, S.; Williams, H. H.; Wilson, J. S.; Wilson, P.; Winer, B. L.; Wittich, P.; Wolbers, S.; Wolfmeister, H.; Wright, T.; Wu, X.; Wu, Z.; Yamamoto, K.; Yamato, D.; Yang, T.; Yang, U. K.; Yang, Y. C.; Yao, W-M; Yeh, G. P.; Yi, K.; Yoh, J.; Yorita, K.; Yoshida, T.; Yu, G. B.; Yu, I; Zanetti, A. M.; Zeng, Y.; Zhou, C.; Zucchelli, S. Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland; Helsinki Inst Phys, FIN-00014 Helsinki, Finland; Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy; Univ Padua, I-35131 Padua, Italy; Univ Michigan, Ann Arbor, MI 48109 USA; Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA; Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy; Comenius Univ, Bratislava 84248, Slovakia; Inst Expt Phys, Kosice 04001, Slovakia; Waseda Univ, Tokyo 169, Japan; Joint Inst Nucl Res, RU-141980 Dubna, Russia; Texas A&M Univ, Mitchell Inst Fundamental Phys & Astron, College Stn, TX 77843 USA; Argonne Natl Lab, Argonne, IL 60439 USA; Univ Oxford, Oxford OX1 3RH, England; Kyungpook Natl Univ, Ctr High Energy Phys, Daegu 702701, South Korea; Seoul Natl Univ, Seoul 151742, South Korea; Sungkyunkwan Univ, Suwon 440746, South Korea; Korea Inst Sci & Technol Informat, Daejeon 305806, South Korea; ChonnamNatl Univ, Gwangju 500757, South Korea; Chonbuk Natl Univ, Jeonju 561756, South Korea; Ewha Womans Univ, Seoul 120750, South Korea; Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA; Purdue Univ, W Lafayette, IN 47907 USA; Johns Hopkins Univ, Baltimore, MD 21218 USA; Ist Nazl Fis Nucl Pisa, I-56127 Pisa, Italy; Univ Siena, I-53100 Siena, Italy; Univ Pisa, I-56126 Pisa, Italy; Univ Wisconsin, Madison, WI 53706 USA; Duke Univ, Durham, NC 27708 USA; Rockefeller Univ, New York, NY 10065 USA; Baylor Univ, Waco, TX 76798 USA; Univ Rochester, Rochester, NY 14627 USA; Univ Pittsburgh, Pittsburgh, PA 15260 USA; Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA; Ist Nazl Fis Nucl Bologna, I-40127 Bologna, Italy; Univ Bologna, I-40127 Bologna, Italy; Michigan State Univ, E Lansing, MI 48824 USA; Glasgow Univ, Glasgow G12 8QQ, Lanark, Scotland; Carnegie Mellon Univ, Pittsburgh, PA 15213 USA; Univ Autonoma Barcelona, Inst Fis Altes Energies, ICREA, E-08193 Bellaterra, Barcelona, Spain; UCL, London WC1E 6BT, England; Univ Illinois, Urbana, IL 61801 USA; Univ Florida, Gainesville, FL 32611 USA; Univ Cantabria, Inst Fis Cantabria, CSIC, Santander 39005, Spain; Ist Nazl Fis Nucl Trieste, I-34127 Trieste, Italy; Harvard Univ, Cambridge, MA 02138 USA; Grp Collegato Udine, I-33100 Udine, Italy; Univ Udine, I-33100 Udine, Italy; Acad Sinica, Inst Phys, Taipei 11529, Taiwan; Univ Calif Davis, Davis, CA 95616 USA; Univ Geneva, CH-12114 Geneva, Switzerland; Wayne State Univ, Detroit, MI 48201 USA; Univ Liverpool, Liverpool L69 7ZE, Merseyside, England; Univ Trieste, I-34127 Trieste, Italy; Ctr Invest Energet Medioambientales & Tecnol, E-28040 Madrid, Spain; Ist Nazl Fis Nucl, Sez Rome 1, Rome, Italy; Natl & Kapodistrian Univ Athens, Athens 15771, Greece; Univ New Mexico, Albuquerque, NM 87131 USA; MIT, Cambridge, MA 02139 USA; Univ Tsukuba, Tsukuba, Ibaraki 305, Japan; Tufts Univ, Medford, MA 02155 USA; Univ Penn, Philadelphia, PA 19104 USA; Ohio State Univ, Columbus, OH 43210 USA; Yale Univ, New Haven, CT 06520 USA; Ist Nazl Fis Nucl Pavia, I-27100 Pavia, Italy; Univ Pavia, I-27100 Pavia, Italy; Sapienza Univ Roma, I-00185 Rome, Italy; Karlsruhe Inst Technol, Inst Expt Kernphys, D-76131 Karlsruhe, Germany; Osaka City Univ, Osaka 5588585, Japan; Scuola Normale Super Pisa, I-56126 Pisa, Italy; Okayama Univ, Okayama 7008530, Japan; Univ Calif Los Angeles, Los Angeles, CA 90024 USA; ITEP, Inst Theoret & Expt Phys, Moscow 117259, Russia Lee, Seunghyun/AAS-8066-2021; Lee, Hyun Su/G-3392-2014; kim, jm/O-5935-2014; Morello, Michael/H-9738-2017; Fassi, Farida/F-3571-2016; Vilar Cortabitarte, Rocio/D-7454-2014; Paulini, Manfred/N-7794-2014; Han, Jiayi/ISB-0237-2023; Zeng, Yu/C-1438-2013; Thukral, Vaikunth/AAX-4802-2021; Camarda, Stefano/IQW-2840-2023; Marino, Pietro/N-7030-2015; Robson, Aidan/G-1087-2011; Marchese, Luigi/KPY-5779-2024; Moon, Chang-Seong/J-3619-2014; Ivanov, Andrew/A-7982-2013; Chen, Ying-Cheng/F-7925-2012; Cavaliere, Viviana/CAE-8597-2022; Barria, Patrizia/AAT-3894-2020; Gonzalez, Josefa/AAH-6071-2019; Cerrito, Lucio/KPA-8260-2024; Huseynov, Nazim/AAE-4663-2019; Oh, Alexander/HHZ-4386-2022; Ruiz Jimeno, Alberto/E-4473-2011; Casarsa, Massimo/L-3623-2018; Amerio, Silvia/J-4605-2012; Morello, Michael Joseph/H-9738-2017; Punzi, Giovanni/J-4947-2012; Wittich, Peter/HOH-5761-2023; Chokheli, Davit/IWE-3349-2023; St.Denis, Richard/C-8997-2012; Nagai, Yoshikazu/AAG-6157-2021; Carosi, Rodolfo/O-7623-2019; Hussein, Mohd/U-2045-2019; Bharthuar, Shudhashil/GQB-2619-2022; Lancaster, Mark/C-1693-2008; Flix, Josep/G-5414-2012; Lancaster, Mark/F-5254-2018; Mazzanti, Paolo/A-8970-2012; Sławińska, Magdalena/W-2551-2018; Donadelli, Marisilvia/H-3710-2016; Gozalez-Lopez, Oscar/AAH-3533-2019; Smith, Joshua/HGV-2348-2022; Michielin, Emanuele/HNQ-7582-2023; Lannon, Kevin/HGU-5755-2022; Di Canto, Angelo/CAI-1408-2022; Torre, Stefano/D-5963-2014; D'Errico, Marco/B-5733-2013; Giagu, Stefano/H-6455-2013; Demortier, Luc/AAE-6344-2020; Palni, Prabhakar/AAX-4648-2020; cerri, alessandro/KRQ-4175-2024; Di Ruzza, Benedetto/ABG-2800-2021; Wang, Song-Ming/AAP-9832-2021; Iori, Mauro/K-2393-2018; Russ, James/P-3092-2014; Wu, Xin/ABH-1729-2020; Bedeschi, Franco/AAA-6068-2021; Annovi, Alberto/AAA-8638-2020; Sagir, Sinan/A-5219-2018; Introzzi, Gianluca/K-2497-2015; D'Onofrio, Adelina/AAT-3903-2020; Donato, Silvio/GPK-2262-2022; Prokoshin, Fedor/E-2795-2012; Strologas, John/GWR-2036-2022; Sfyrla, Anna/AEL-2938-2022; Semenov, Alexey/Y-9665-2019; Scodellaro, Luca/K-9091-2014; Gandrajula, Reddy/AFR-4403-2022; Cortabitarte, Rocio/P-8480-2014; Fernandez Menendez, Javier/B-6550-2014; Piacentino, Giovanni/K-3269-2015 35274647400; 35226945800; 35354121400; 56967687600; 35226940800; 34568529500; 56448123700; 7102681234; 34568421500; 35226939900; 35221149000; 35226935300; 26326724500; 35274615900; 7005811012; 56948830900; 57206127832; 57202557626; 57219465629; 56842764500; 35274582500; 56978891600; 57208122370; 57221405105; 34567524500; 57196632837; 35221227800; 35226934600; 35354027100; 57206408129; 36661823100; 35226976300; 59267580300; 35226976800; 59637920800; 35227012000; 57218186391; 35274580000; 57212735142; 14010369600; 35226977300; 57201334434; 35350915600; 56889137700; 8398051000; 55601515500; 56814506500; 36639279900; 35274254300; 35274563200; 35274366400; 35356070900; 56269624500; 59157809400; 35274382100; 56277114700; 57223807547; 57216586580; 35227045400; 35274521100; 56808129000; 56808147200; 59815677700; 35227040100; 35352820900; 35227049700; 57207798241; 35227041400; 59437124500; 35228434400; 55188677000; 55524237600; 35274321900; 35355091800; 35274269400; 35274305600; 55600267700; 55612674200; 57211759746; 35227058300; 8658102900; 35227046900; 57201355284; 35227165700; 35227152100; 35274382000; 36662155300; 35274892100; 35227195900; 55546864600; 35227162900; 35227032100; 36930002300; 24366198200; 26425810400; 57216997650; 35276955700; 35227138700; 57190564404; 55600529000; 12788528800; 36782838600; 57198185645; 26667723800; 35276915300; 35227256600; 34975082800; 55423185500; 36930320100; 55868435500; 57219465793; 35275005700; 35227254300; 8968168500; 35227264600; 35276893000; 35227263000; 56008410600; 35227287700; 35227268200; 57216599337; 35227260400; 56400058100; 31967562900; 35227241000; 35227287500; 55537749000; 35227270800; 35313829300; 35350702500; 56858583700; 35227265800; 55601737400; 35227246000; 55432652200; 35227258700; 36660861400; 56808157900; 57211830650; 35227251800; 57220064396; 55601287500; 57218186739; 26667724700; 57197462873; 35308730700; 55546507600; 55613170900; 44461327200; 58792743700; 57214369769; 34881572300; 35276870200; 57207904392; 56741597600; 34569930000; 34975048700; 55546816000; 35227372700; 35227364300; 35276947700; 35227414500; 57203575801; 35227379900; 35227370300; 55942132400; 55600529700; 58485742200; 57203514331; 57218185818; 58427873200; 35275395900; 35276868400; 35227519700; 55574225043; 59615638300; 57225018658; 55686296900; 59781903500; 34769914200; 57219206706; 34771030500; 57776760800; 35227507600; 35227517100; 35227518200; 57216595207; 57221416808; 56610420300; 56978723900; 57209634282; 35227570700; 57226204655; 57219465826; 35227504200; 35227504300; 35227499900; 35227509900; 56113238600; 57943807000; 36662609200; 35227483400; 55484023000; 56433801700; 35227607600; 26667747100; 59878984900; 35227644100; 35223832600; 57223637238; 35227631000; 55508018900; 35277437900; 57203386454; 35227629000; 35227656000; 57202556930; 35227626300; 35227605700; 9332997300; 18040525300; 55252191500; 35275841400; 55869771800; 35227658600; 55612439900; 6602817512; 59874437600; 35746535200; 35275951100; 35227656300; 35227622500; 35227687900; 35227629100; 56448196900; 35227634700; 56901154700; 35275618100; 35227730600; 35227755400; 57136457100; 35227719700; 56365007800; 58828196700; 35227728400; 7401843276; 56597596100; 35227740700; 35275673800; 6701833984; 35277454800; 35227782900; 59875903800; 57080464300; 6603765102; 57080531200; 35227721700; 59794439700; 35227747100; 35275775700; 57202562302; 35227730500; 35227756100; 8385348600; 36662913000; 35227754900; 45661522300; 55600666000; 56835869000; 7202344412; 35227868700; 35227853000; 35277421200; 35227838000; 35227848200; 56786629800; 36662726900; 57198353131; 57207900584; 35227835300; 36081177100; 56808176200; 57202559840; 57202557636; 57202557150; 35227846600; 57193253351; 8403809400; 55254610800; 35227851600; 35227836800; 57203259025; 35277538200; 35227849300; 55601040100; 35227884400; 7101710629; 36662882500; 35222111500; 24303617300; 35227845000; 57216593984; 36931141900; 35227961200; 57219510442; 16020826400; 35277534000; 35227956800; 35227979700; 35227949300; 35227975600; 44861658400; 35227973800; 35227970200; 56879242200; 35277339700; 35277692400; 57203031981; 35227950700; 35227947200; 57221413040; 57214135514; 7003959436; 35227979900; 57221186307; 35227965000; 59792147300; 35228001900; 58430029900; 8893314900; 35227981400; 57225680249; 36663071100; 35228066100; 35228129000; 36663014400; 57225666975; 35323427400; 57216998077; 57202563775; 35228109200; 35277533400; 55613015700; 35286097900; 35228145300; 57203178502; 57225133120; 59662780900; 56967750200; 35277449000; 35277653500; 35228079000; 35228106300; 57219639890; 35228077100; 59618486500; 54421369400; 35277462000; 35222622800; 57219642585; 35277504600; 35228076600; 57208466176; 57203072085; 57221278147; 35228205900; 35214130600; 57203215394; 35228203500; 35277531900; 35228222000; 47861524200; 35214069800; 57218186227; 26427401700; 35228254200; 57200411357; 7402187649; 56424219000; 59632011200; 56141285200; 54958009800; 36663019500; 59449373100; 57457727400; 56808123700; 35228223900; 59578188000; 35228199000; 57279226700; 35087155100; 35228242500; 35228244700; 35228206500; 55260490400; 57202308293; 57207898001 ashutosh.kotwal@duke.edu; SCIENCE SCIENCE 0036-8075 1095-9203 376 6589 SCIE MULTIDISCIPLINARY SCIENCES 2022 56.9 2.1 35.45 2025-06-25 457 501 TRANSVERSE-MOMENTUM RESUMMATION; PAIR PRODUCTION; LEPTON PAIRS; ELECTROMAGNETIC CALORIMETER; P(P)OVER-BAR COLLISIONS; HIGH-ENERGIES; DARK-MATTER; WIDTH; BREMSSTRAHLUNG; ELECTRONS activation energy; particle size; physics; article; boson; elementary particle; expectation; luminance; physics; tension; uncertainty; vacuum; velocity English 2022 2022-04-08 10.1126/science.abk1781 바로가기 바로가기 바로가기 바로가기
Article Selective conversion of N2 to NH3 on highly dispersed RuO2 using amphiphilic ionic liquid-anchored fibrous carbon structure Ammonia (NH3) plays a key role in the agricultural fertilizer and commodity chemical industries and is useful for exploring hydrogen storage carriers. The electrochemical nitrogen reduction reaction (NRR) is receiving attention as an environmentally sustainable NH3 synthesis replacement for the traditional Haber-Bosch process owing to its near ambient reaction conditions (<100 degrees C and 1 atm). However, its NH3 yield and faradaic efficiency are extremely low because of the sluggish kinetics of N N bond disso-ciation and the hindrance from competitive hydrogen evolution. To overcome these challenges, we herein introduce a dual-functionalized ionic liquid (1-(4-hydroxybutyl)-3-methylimidazolium hydroxide [HOBIM]OH) for a highly dispersed ruthenium oxide electrocatalyst to achieve a biased NRR. The observed uniform distribution of RuO2 on the carbon fiber and increase in the surface area for N-2 adsorp-tion by limiting proton access can be attributed to the presence of imidazolium ions. Moreover, extensive N-2 adsorption contributes to enhanced NRR selectivity with an NH3 yield of 3.0 x 10(-10) mol cm(-2) s(-1) (91.8 lg h(-1) mg(-1)) anda faradaic efficiency of 2.2% at-0.20 VRHE. We expect our observations to provide new insights into the design of effective electrode structures for electrochemical NH3 synthesis. (C) 2021 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by ELSEVIER B.V. and Science Press. All rights reserved. Ham, Kahyun; Salman, Muhammad; Chung, Sunki; Choi, Minjun; Ju, HyungKuk; Lee, Hye Jin; Lee, Jaeyoung Gwangju Inst Sci & Technol GIST, Sch Earth Sci & Environm Engn, 123 Cheomdangwagi Ro, Gwangju 61005, South Korea; GIST, Int Future Res Ctr Chem Energy Storage & Convers, 123 Cheomdangwagi Ro, Gwangju 61005, South Korea; GIST, Ertl Ctr Electrochem & Catalysis, 123 Cheomdangwagi Ro, Gwangju 61005, South Korea; Kyungpook Natl Univ, Dept Chem, 80 Daehak Ro, Daegu City 41566, South Korea; Kyungpook Natl Univ, Green Nano Mat Res Ctr, 80 Daehak Ro, Daegu City 41566, South Korea; Korea Inst Energy Res, Hydrogen Res Dept, 152 Gajeong Ro, Daejeon 34129, South Korea Lee, Jaeyoung/AAG-3372-2019; Ju, HyungKuk/C-5603-2012; LEE, HYEJIN/W-1345-2018; Ju, HyungKuk/G-5107-2013 57194153227; 57220856870; 57212448029; 57209411490; 56270115700; 56569175200; 57195131278 hyungkuk.ju@kier.re.kr;hyejinlee@knu.ac.kr;jaeyoung@gist.ac.kr; JOURNAL OF ENERGY CHEMISTRY J ENERGY CHEM 2095-4956 67 SCIE CHEMISTRY, APPLIED;CHEMISTRY, PHYSICAL;ENERGY & FUELS;ENGINEERING, CHEMICAL 2022 13.1 2.1 1.63 2025-06-25 25 24 Ammonia synthesis; Nitrogen reduction reaction; Imidazolium-based ionic liquid; Ruthenium oxide ELECTROCHEMICAL AMMONIA-SYNTHESIS; NITROGEN REDUCTION REACTION; OXYGEN VACANCIES; RECENT PROGRESS; NANOPARTICLES; ELECTRODE; TEMPERATURE; EFFICIENCY; ELECTROSYNTHESIS; EVOLUTION Ammonia synthesis; Imidazolium-based ionic liquid; Nitrogen reduction reaction; Ruthenium oxide Carbon fibers; Chemical industry; Efficiency; Electrocatalysts; Hydrogen storage; Ionic liquids; Reduction; Ruthenium compounds; Ammonia synthesis; Amphiphilics; Electrochemicals; Faradaic efficiencies; Imidazolium-based ionic liquid; N 2 adsorption; Nitrogen reduction; Nitrogen reduction reaction; Reduction reaction; Ruthenium oxide; Ammonia English 2022 2022-04 10.1016/j.jechem.2021.09.004 바로가기 바로가기 바로가기 바로가기
Article Unveiling anomalous lattice shrinkage induced by Pi-backbonding in Prussian blue analogues Transition-metal (TM)-based Prussian blue and its analogues (TM-PBAs) have attracted considerable attention as cathode materials owing to their versatile ion storage capability with tunable working voltages. TM-PBAs with different crystal structures, morphologies, and TM combinations can exhibit excellent electrochemical properties because of their unique and robust host frameworks with well-defined ionic diffusion channels. Nonetheless, there is still a lack of understanding regarding the performance dependence of TM-PBAs on structural changes during charging/discharging processes. In this study, in situ X-ray diffraction and X-ray absorption fine structure analyses elucidate the TM dependent structural changes in a series of TM-PBAs during the charging and discharging processes. During the discharging process, the lattice volume of Fe-PBA increased while those of Ni-and Cu-PBAs decreased. This discrepancy is attributed to the extent of size reduction of the cyanometallate complex ([Fe(CN)6]) via pi-backbonding from Fe to C due to redox flips of the low-spin Fe3+/2+ ion. This study presents a comprehensive understanding of how TM selection affects capacity acquisition and phase transition in TM-PBAs, a promising class of cathode materials. (C)& nbsp;2022 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by ELSEVIER B.V. and Science Press. All rights reserved. Lee, Ju-Hyeon; Bae, Jin-Gyu; Lee, Hyeon Jeong; Lee, Ji Hoon Kyungpook Natl Univ, Sch Mat Sci & Engn, Daegu 41566, South Korea; Univ Oxford, Dept Mat, Oxford OX1 3PH, England Lee, Ji/AAU-7285-2021; Lee, Ju/M-8764-2019; Lee, Ji Hoon/T-4913-2017 57486987100; 57487313300; 56711412600; 55689885200 hyeonjeong.lee@materials.ox.ac.uk;jihoonlee@knu.ac.kr; JOURNAL OF ENERGY CHEMISTRY J ENERGY CHEM 2095-4956 70 SCIE CHEMISTRY, APPLIED;CHEMISTRY, PHYSICAL;ENERGY & FUELS;ENGINEERING, CHEMICAL 2022 13.1 2.1 0.92 2025-06-25 13 13 Prussian blue analogues; X-ray diffraction; X-ray absorption fine structure; Pi-backdonation; Cyanides CATHODE MATERIAL; HIGH-CAPACITY; ELECTROCHEMICAL PROPERTIES; AQUEOUS-ELECTROLYTE; SUPERIOR CATHODE; CYCLE LIFE; ION; REDOX; HEXACYANOFERRATE; TRANSPORT Cyanides; Pi-backdonation; Prussian blue analogues; X-ray absorption fine structure; X-ray diffraction Atomic physics; Cathodes; Copper compounds; Extended X ray absorption fine structure spectroscopy; Iron compounds; Metal working; Transition metals; X ray absorption; Back-bonding; Back-donation; Discharging process; Ion storage; Lattice shrinkages; Pi-backdonation; Prussian blue; Prussian blue analogues; X ray absorption fine structures; X- ray diffractions; X ray diffraction English 2022 2022-07 10.1016/j.jechem.2022.02.032 바로가기 바로가기 바로가기 바로가기
Article A Comparison of Charge Carrier Dynamics in Organic and Perovskite Solar Cells The charge carrier dynamics in organic solar cells and organic-inorganic hybrid metal halide perovskite solar cells, two leading technologies in thin-film photovoltaics, are compared. The similarities and differences in charge generation, charge separation, charge transport, charge collection, and charge recombination in these two technologies are discussed, linking these back to the intrinsic material properties of organic and perovskite semiconductors, and how these factors impact on photovoltaic device performance is elucidated. In particular, the impact of exciton binding energy, charge transfer states, bimolecular recombination, charge carrier transport, sub-bandgap tail states, and surface recombination is evaluated, and the lessons learned from transient optical and optoelectronic measurements are discussed. This perspective thus highlights the key factors limiting device performance and rationalizes similarities and differences in design requirements between organic and perovskite solar cells. Wu, Jiaying; Cha, Hyojung; Du, Tian; Dong, Yifan; Xu, Weidong; Lin, Chieh-Ting; Durrant, James R. Imperial Coll London, Dept Chem, London W12 0BZ, England; Imperial Coll London, Ctr Processable Elect, London W12 0BZ, England; Kyungpook Natl Univ, Dept Hydrogen & Renewable Energy, Daegu 41566, South Korea; Swansea Univ, Coll Engn, SPECIFIC IKC, Bay Campus,Fabian Way, Swansea SA1 8EN, W Glam, Wales Du, Tian/AAQ-5688-2020; Wu, Jiaying/ABE-3868-2020; Durrant, James/A-6198-2009; Dong, Yifan/JFK-6237-2023; Lin, Chieh-Ting/ABR-7976-2022; Xu, Weidong/LVS-2021-2024 56911317800; 35885242200; 56428582500; 57207011215; 57222284706; 57194687776; 56401622800 hcha@knu.ac.kr;j.durrant@imperial.ac.uk; ADVANCED MATERIALS ADV MATER 0935-9648 1521-4095 34 2 SCIE CHEMISTRY, MULTIDISCIPLINARY;CHEMISTRY, PHYSICAL;MATERIALS SCIENCE, MULTIDISCIPLINARY;NANOSCIENCE & NANOTECHNOLOGY;PHYSICS, APPLIED;PHYSICS, CONDENSED MATTER 2022 29.4 2.2 7.9 2025-06-25 157 103 charge recombination; charge transport; charge trapping; photophysics; solar cells OPEN-CIRCUIT VOLTAGE; EXCITON BINDING-ENERGY; NON-FULLERENE ACCEPTORS; HALIDE PEROVSKITE; HIGHLY EFFICIENT; FILL FACTOR; BIMOLECULAR RECOMBINATION; MATERIAL ENERGETICS; TRANSPORT LAYERS; EFFECTIVE-MASS Binding energy; Carrier transport; Charge transfer; Charge trapping; Metal halides; organic-inorganic materials; Perovskite; Perovskite solar cells; Solar power generation; Advanced materials; Charge carrier dynamics; Charge recombinations; Charge-trapping; Device performance; Halide perovskites; Leading technology; Organic/Inorganic hybrids; Photophysics; Thin film photovoltaics; Organic solar cells English 2022 2022-01 10.1002/adma.202101833 바로가기 바로가기 바로가기 바로가기
Article A Robust Authentication Protocol for Wireless Medical Sensor Networks Using Blockchain and Physically Unclonable Functions Wireless medical sensor networks (WMSNs)-based medical systems are an emerging paradigm of the Internet of Medical Things (IoMT) in which the patients and doctors can access various healthcare services via wireless communication technology without visiting the hospital in person. However, an adversary attempts a variety of security attacks because the sensitive information in various fields is exchanged via an insecure channel. Thus, robust and lightweight authentication protocols are essential for providing dependable healthcare services in WMSN-based medical systems. Recently, Wang et al. (IEEE Internet of Things Journal, doi: 10.1109/JIOT.2021.3117762) proposed blockchain and physically unclonable functions (PUFs)-based lightweight authentication protocol for WMSN. They claimed that their protocol is resistant to cyber and physical security threats and also does provide necessary security requirements. However, we prove that their protocol is vulnerable to various security attacks, such as man-in-the-middle and session key disclosure attacks and also lacks mutual authentication. As a result, we propose a robust authentication protocol for WMSN using blockchain and PUF to address the security problems raised by Wang et al.'s scheme. we assess the security of the proposed scheme by using informal and formal security analyses, such as AVISPA simulation and the ROR oracle model. Furthermore, we present the testbed experiments using Raspberry PI 4 based on MIRACL Crypto SDK. Then, we show the performance of the enhanced scheme compared with related schemes based on testbed experiments. Consequently, our scheme is better suited for practical WMSN-based medical systems because it provides greater security and efficiency than competing schemes. Yu, Sungjin; Park, Youngho Kyungpook Natl Univ, Sch Elect & Elect Engn, Daegu 41566, South Korea; Elect & Telecommun Res Inst, Cryptog Engn Res Sect, Daejeon 34129, South Korea 57203974524; 56962990300 darkskiln@knu.ac.kr;parkyh@knu.ac.kr; IEEE INTERNET OF THINGS JOURNAL IEEE INTERNET THINGS 2327-4662 9 20 SCIE COMPUTER SCIENCE, INFORMATION SYSTEMS;ENGINEERING, ELECTRICAL & ELECTRONIC;TELECOMMUNICATIONS 2022 10.6 2.2 7.36 2025-06-25 71 95 Security; Blockchains; Authentication; Medical diagnostic imaging; Medical services; Protocols; Internet of Things; Authentication; blockchain; cryptanalysis; physical unclonable functions; wireless medical sensor networks (WMSNs) KEY AGREEMENT PROTOCOL; HEALTH-CARE-SYSTEMS; PROVABLY SECURE; LIGHTWEIGHT; SCHEME; EXCHANGE; INTERNET Authentication; blockchain; cryptanalysis; physical unclonable functions; wireless medical sensor networks (WMSNs) Authentication; Cryptography; Cybersecurity; Diagnosis; Health care; Heterogeneous networks; Internet of things; Internet protocols; Medical imaging; Network security; Security systems; Testbeds; Wireless sensor networks; Authentication.; Block-chain; Cryptanalyse; Medical diagnostic imaging; Medical sensor networks; Medical services; Robust authentication protocols; Security; Wireless medical sensor network; Blockchain English 2022 2022-10-15 10.1109/jiot.2022.3171791 바로가기 바로가기 바로가기 바로가기
Article A Wide Bandgap Halide Perovskite Based Self-Powered Blue Photodetector with 84.9% of External Quantum Efficiency A self-powered, color-filter-free blue photodetector (PD) based on halide perovskites is reported. A high external quantum efficiency (EQE) of 84.9%, which is the highest reported EQE in blue PDs, is achieved by engineering the A-site monovalent cations of wide-bandgap perovskites. The optimized composition of formamidinium (FA)/methylammonium (MA) increases the heat of formation, yielding a uniform and smooth film. The incorporation of Cs+ ions into the FA/MA composition suppresses the trap density and increases charge-carrier mobility, yielding the highest average EQE of 77.4%, responsivity of 0.280 A W−1, and detectivity of 5.08 × 1012 Jones under blue light. Furthermore, Cs+ improves durability under repetitive operations and ambient atmosphere. The proposed device exhibits peak responsivity of 0.307 A W−1, which is higher than that of the commercial InGaN-based blue PD (0.289 A W−1). This study will promote the development of next-generation image sensors with vertically stacked perovskite PDs. © 2022 Wiley-VCH GmbH. Yun, Yeonghun; Han, Gill Sang; Park, Gyu Na; Kim, Jihyun; Park, Jinhong; Vidyasagar, Devthade; Jung, Jina; Choi, Won Chang; Choi, Young Jin; Heo, Kwang; Kang, Joohoon; Park, Ji-Sang; Jung, Hyun Suk; Lee, Sangwook School of Materials Science and Engineering, Kyungpook National University (KNU), Daegu, 41566, South Korea; School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, South Korea; School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, South Korea; School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, South Korea; Department of Nanotechnology and Advanced Materials Engineering, Hybrid Materials Research Center (HMC), Sejong University (SJU), Seoul, 05006, South Korea; School of Materials Science and Engineering, Kyungpook National University (KNU), Daegu, 41566, South Korea; School of Materials Science and Engineering, Kyungpook National University (KNU), Daegu, 41566, South Korea; School of Materials Science and Engineering, Kyungpook National University (KNU), Daegu, 41566, South Korea; Department of Nanotechnology and Advanced Materials Engineering, Hybrid Materials Research Center (HMC), Sejong University (SJU), Seoul, 05006, South Korea; Department of Nanotechnology and Advanced Materials Engineering, Hybrid Materials Research Center (HMC), Sejong University (SJU), Seoul, 05006, South Korea; School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, South Korea, KIST-SKKU Carbon-Neutral Research Center, Sungkyunkwan University (SKKU), Suwon, 16419, South Korea; SKKU Advanced Institute of Nanotechnology (SAINT) and Department of Nano Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, South Korea; School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, South Korea, SKKU Institute of Energy Science and Technology (SIEST), Sungkyunkwan University (SKKU), Suwon, 16419, South Korea; School of Materials Science and Engineering, Kyungpook National University (KNU), Daegu, 41566, South Korea 57202548363; 36463511300; 57736276900; 55793484100; 58946761400; 57201674442; 57222277455; 57306430400; 56386405600; 16241347000; 56623649100; 36671796300; 9432551800; 57203597324 wook2@knu.ac.kr;hangilsang@skku.edu;hsjung1@skku.edu; Advanced Materials ADV MATER 0935-9648 1521-4095 34 51 SCIE CHEMISTRY, MULTIDISCIPLINARY;CHEMISTRY, PHYSICAL;MATERIALS SCIENCE, MULTIDISCIPLINARY;NANOSCIENCE & NANOTECHNOLOGY;PHYSICS, APPLIED;PHYSICS, CONDENSED MATTER 2022 29.4 2.2 1.7 2025-06-25 22 blue photodetectors; compositional engineering; halide perovskites; image sensors; wide-bandgap materials Carrier mobility; Energy gap; III-V semiconductors; Image sensors; Perovskite; Photons; Quantum efficiency; Blue photodetector; Color filters; Compositional engineering; Cs +; External quantum efficiency; Halide perovskites; Monovalent cations; Self-powered; Wide band-gap material; Wide-band-gap; Photodetectors English Final 2022 10.1002/adma.202206932 바로가기 바로가기 바로가기
Article Designing Fine-Grained Access Control for Software-Defined Networks Using Private Blockchain Emerging next-generation Internet yields proper administration of a wide-ranging dynamic network to assist rapid ubiquitous resource accessibility, whilst providing higher channel bandwidth. Since its inception, the traditional static network infrastructure-based solutions involve manual configuration and proprietary controls of networked devices. It then leads to improper utilization of the overall resources, and hence experiences various security threats. Although transport layer security (TLS)-based solution is presently advocated in the said framework, it is vulnerable to many security threats like man-in-the-middle, replay, spoofing, privileged insider, impersonation, and denial-of-service attacks. Moreover, the current settings of the said tool do not facilitate any secure and reliable mechanisms for data forwarding, application flow routing, new configuration deployment, and network event management. Also, it suffers from the single point of controller failure issue. In this article, we propose a new private blockchain-enabled fine-grained access control mechanism for the SDN environment. In this regard, attribute-based encryption (ABE) and certificate-based access control protocol are incorporated. This proposed solution can resist several well-known security threats, and alleviate different system-level inconveniences. The formal and informal security inspections and performancewise comparative study of the proposed scheme endorse better qualifying scores as compared to the other existing competing state-of-the-art schemes. Besides, the experimental testbed implementation and blockchain simulation show the implementation feasibility of the proposed mechanism. Chattaraj, Durbadal; Bera, Basudeb; Das, Ashok Kumar; Rodrigues, Joel J. P. C.; Park, Youngho JIS Coll Engn, Dept Informat Technol, Kalyani 741235, W Bengal, India; JIS Coll Engn, Dept Comp Sci & Engn, Kalyani 741235, W Bengal, India; Int Inst Informat Technol Hyderabad, Ctr Secur Theory & Algorithm Res, Hyderabad 500032, India; Univ Fed Piaui, PPGEE, BR-64049550 Teresina Pi, Brazil; Inst Telecomunicacoes, P-6201001 Covilha, Portugal; Kyungpook Natl Univ, Sch Elect Engn, Daegu 41566, South Korea ; Das, Ashok Kumar/U-2790-2019; Chattaraj, Durbadal/Y-1724-2019; Bera, Basudeb/ACC-6233-2022; Rodrigues, Joel/A-8103-2013 36613016900; 57214777647; 55450732800; 25930566300; 56962990300 durbadal.chattaraj@jiscollege.ac.in;basudeb.bera@research.iiit.ac.in;iitkgp.akdas@gmail.com;joeljr@ieee.org;parkyh@knu.ac.kr; IEEE INTERNET OF THINGS JOURNAL IEEE INTERNET THINGS 2327-4662 9 2 SCIE COMPUTER SCIENCE, INFORMATION SYSTEMS;ENGINEERING, ELECTRICAL & ELECTRONIC;TELECOMMUNICATIONS 2022 10.6 2.2 2.58 2025-06-25 27 34 Security; Access control; Blockchain; Protocols; Internet of Things; Real-time systems; Authentication; Access control; blockchain; consensus; next-generation network; security; software-defined networking (SDN) LIGHTWEIGHT AUTHENTICATION MECHANISM; IOT-ENABLED INTERNET; CONTROL SCHEME; FRAMEWORK; SECURITY; PROTOCOL Access control; blockchain; consensus; next-generation network; security; software-defined networking (SDN) Blockchain; Cryptography; Denial-of-service attack; Information management; Network security; Next generation networks; Security systems; Software defined networking; Block-chain; Consensus; Fine grained; Next generation Internet; Next-generation networks; Security; Security threats; Software-defined networking; Software-defined networkings; Software-defined networks; Access control English 2022 2022-01-15 10.1109/jiot.2021.3088115 바로가기 바로가기 바로가기 바로가기
Article MIMO-LoRa for High-Data-Rate IoT: Concept and Precoding Design Long range (LoRa) is a widely adopted modulation scheme for Internet of Things (IoT), but its data rate is low. To tackle this problem, in this letter, we introduce a novel concept of MIMO-LoRa: an integration of multiple-input multiple-output (MIMO) and LoRa for achieving high data rates. We also design a precoding for the proposed MIMO-LoRa system to further enhance the link reliability. The validity and effectiveness of the proposed MIMO-LoRa system are demonstrated through numerical simulations. Kang, Jae-Mo Kyungpook Natl Univ, Dept Artificial Intelligence, Daegu 41566, South Korea 56024930400 jmkang@knu.ac.kr; IEEE INTERNET OF THINGS JOURNAL IEEE INTERNET THINGS 2327-4662 9 12 SCIE COMPUTER SCIENCE, INFORMATION SYSTEMS;ENGINEERING, ELECTRICAL & ELECTRONIC;TELECOMMUNICATIONS 2022 10.6 2.2 1.64 2025-06-25 13 21 Precoding; Internet of Things; Signal to noise ratio; MIMO communication; Modulation; Transmitting antennas; Wireless communication; Internet of Things (IoT); long range (LoRa); multiple-input multiple-output (MIMO); precoding MODULATION Internet of Things (IoT); Long range (LoRa); Multiple-input multiple-output (MIMO); Precoding MIMO systems; Modulation; Signal to noise ratio; Internet of thing; Long range; Multiple inputs; Multiple outputs; Multiple-input multiple-output; Multiple-input multiple-output communications; Precoding; Precoding.; Transmitting antenna; Wireless communications; Internet of things English 2022 2022-06-15 10.1109/jiot.2022.3143516 바로가기 바로가기 바로가기 바로가기
Article Oligoethylene Glycol Side Chains Increase Charge Generation in Organic Semiconductor Nanoparticles for Enhanced Photocatalytic Hydrogen Evolution Organic semiconductor nanoparticles (NPs) composed of an electron donor/acceptor (D/A) semiconductor blend have recently emerged as an efficient class of hydrogen-evolution photocatalysts. It is demonstrated that using conjugated polymers functionalized with (oligo)ethylene glycol side chains in NP photocatalysts can greatly enhance their H-2-evolution efficiency compared to their nonglycolated analogues. The strategy is broadly applicable to a range of structurally diverse conjugated polymers. Transient spectroscopic studies show that glycolation facilitates charge generation even in the absence of a D/A heterojunction, and further suppresses both geminate and nongeminate charge recombination in D/A NPs. This results in a high yield of photogenerated charges with lifetimes long enough to efficiently drive ascorbic acid oxidation, which is correlated with greatly enhanced H-2-evolution rates in the glycolated NPs. Glycolation increases the relative permittivity of the semiconductors and facilitates water uptake. Together, these effects may increase the high-frequency relative permittivity inside the NPs sufficiently, to cause the observed suppression of exciton and charge recombination responsible for the high photocatalytic activities of the glycolated NPs. Kosco, Jan; Gonzalez-Carrero, Soranyel; Howells, Calvyn T.; Zhang, Weimin; Moser, Maximilian; Sheelamanthula, Rajendar; Zhao, Lingyun; Willner, Benjamin; Hidalgo, Tania C.; Faber, Hendrik; Purushothaman, Balaji; Sachs, Michael; Cha, Hyojung; Sougrat, Rachid; Anthopoulos, Thomas D.; Inal, Sahika; Durrant, James R.; McCulloch, Iain King Abdullah Univ Sci & Technol KAUST, Phys Sci & Engn Div PSE, KAUST Solar Ctr KSC, Thuwal 239556900, Saudi Arabia; Imperial Coll London, Dept Chem & Ctr Processable Elect, Exhibit Rd, London SW7 2AZ, England; Univ Oxford, Dept Chem, 12 Mansfield Rd, Oxford OX1 4BH, England; King Abdullah Univ Sci & Technol KAUST, KAUST Core Labs, Thuwal 239556900, Saudi Arabia; King Abdullah Univ Sci & Technol KAUST, Organ Bioelect Lab, Biol & Environm Sci & Engn Div, Thuwal 239556900, Saudi Arabia; Kyungpook Natl Univ, Dept Hydrogen & Renewable Energy, Daegu 41566, South Korea ANTHOPOULOS, THOMAS/AAE-7690-2019; Sougrat, Rachid/JJG-1658-2023; Zhang, Weimin/H-2766-2012; Inal, Sahika/AAU-4924-2020; Durrant, James/A-6198-2009; Sachs, Michael/KAM-0157-2024; Anthopoulos, Thomas/F-5625-2016; McCulloch, Iain/G-1486-2015; Gonzalez-Carrero, Soranyel/I-2829-2016; Zhao, Lingyun/LGZ-9588-2024 6603379058; 56015827500; 55212084600; 35575501000; 57543489000; 57214331352; 57351624500; 57218705472; 57219654336; 33567624500; 24071273300; 57190578139; 35885242200; 6507768059; 6701337286; 27667687900; 56401622800; 57216793729 jan.kosco@kaust.edu.sa;iain.mcculloch@chem.ox.ac.uk; ADVANCED MATERIALS ADV MATER 0935-9648 1521-4095 34 22 SCIE CHEMISTRY, MULTIDISCIPLINARY;CHEMISTRY, PHYSICAL;MATERIALS SCIENCE, MULTIDISCIPLINARY;NANOSCIENCE & NANOTECHNOLOGY;PHYSICS, APPLIED;PHYSICS, CONDENSED MATTER 2022 29.4 2.2 4.49 2025-06-25 66 58 hydrogen; nanoparticles; organic semiconductors; photocatalysts; solar fuels POLYMER PHOTOCATALYSTS; DIELECTRIC-CONSTANT; CONJUGATED POLYMERS; WATER; EFFICIENT; MOBILITY; ENERGY; TIO2 hydrogen; nanoparticles; organic semiconductors; photocatalysts; solar fuels Ascorbic acid; Conjugated polymers; Ethylene; Ethylene glycol; Heterojunctions; Hydrogen; Permittivity; Photocatalytic activity; Solar power generation; Spectroscopic analysis; Charge generation; Charge recombinations; Electron donor acceptors; H 2 evolution; Oligoethylene glycols; Photocatalytic hydrogen evolution; Relative permittivity; Semiconductor nanoparticles; Side-chains; Solar fuels; Nanoparticles English 2022 2022-06 10.1002/adma.202105007 바로가기 바로가기 바로가기 바로가기
Article On the LoRa Modulation for IoT: Optimal Preamble Detection and Its Performance Analysis This article investigates the problem of preamble detection for the long-range (LoRa) modulation and analyzes its performance. For analysis, the inevitable multiuser interference is reasonably modeled as correlated noise. First, the optimal preamble detector is derived and the best preamble is designed to maximize the detection probability while achieving a target value of the false alarm rate. To reduce the required computational complexity and to gain more insights, the preamble detection problem is further investigated for two important special scenarios with: 1) a large spreading factor (SF) and 2) uncorrelated noise, respectively. The analysis is then extended to the case in the presence of phase offset. Our work reveals that the existing preamble detection methods are strictly suboptimal. In addition, various useful and interesting engineering insights into preamble detection with LoRa modulation are provided from the derived results, and the theoretical performance limit of the preamble detection with LoRa modulation is quantified. Extensive numerical results demonstrate the effectiveness and superiority of the proposed scheme. Particularly, the proposed scheme outperforms the existing schemes by more than 10 dB in terms of signal-to-noise ratio (SNR) at the detection probability of 80% and the target false alarm rate of 10%. Kang, Jae-Mo; Lim, Dong-Woo; Kang, Kyu-Min Kyungpook Natl Univ, Dept Artificial Intelligence, Daegu 41566, South Korea; Elect & Telecommun Res Inst, Radio & Satellite Res Div, Daejeon 34129, South Korea 56024930400; 55694295300; 7402223603 jmkang@knu.ac.kr;window0508@etri.re.kr;kmkang@etri.re.kr; IEEE INTERNET OF THINGS JOURNAL IEEE INTERNET THINGS 2327-4662 9 7 SCIE COMPUTER SCIENCE, INFORMATION SYSTEMS;ENGINEERING, ELECTRICAL & ELECTRONIC;TELECOMMUNICATIONS 2022 10.6 2.2 0.94 2025-06-25 12 12 Modulation; Interference; Probability distribution; Receivers; Internet of Things; Shape; Indexes; Internet of Things (IoT); long range (LoRa); performance analysis; preamble design; preamble detection OPTIMIZATION; ARCHITECTURE Internet of Things (IoT); Long range (LoRa); Performance analysis; Preamble design; Preamble detection Errors; Image resolution; Internet of things; Modulation; Signal to noise ratio; Index; Interference; Internet-of-thing; Long range; Performances analysis; Preamble design.; Preamble designs; Preamble detection; Probability: distributions; Receiver; Shape; Probability distributions English 2022 2022-04-01 10.1109/jiot.2021.3108139 바로가기 바로가기 바로가기 바로가기
Article SCS-WoT: Secure Communication Scheme for Web of Things Deployment Web of Things (WoT) extends the Internet of Things (IoT) paradigm to facilitate communications among smart things/devices and Web-based applications. In other words, WoT systems generally provide a Web interface for the monitoring and controlling of smart devices over the Web, for example, in applications, such as home automation, intelligent transportation system, smart healthcare, smart cities, and smart agriculture. However, this results in the generation of significant volume of data (i.e., big data) and, hence, the importance of big data analytics. There are also associated security and privacy implications. Therefore, in this article, we present a signature-based authentication and key agreement scheme for the WoT environment and prove its security. We also evaluate the performance of SCS-WoT and compare it against four other competing schemes. The findings show that SCS-WoT achieves better performance in terms of communication cost, computational cost, and security and functionality. Wazid, Mohammad; Das, Ashok Kumar; Choo, Kim-Kwang Raymond; Park, Youngho Graph Era Deemed Be Univ, Dept Comp Sci & Engn, Dehra Dun 248002, Uttarakhand, India; Int Inst Informat Technol Hyderabad, Ctr Secur Theory & Algorithm Res, Hyderabad 500032, India; Univ Texas San Antonio, Dept Informat Syst & Cyber Secur, Dept Elect & Comp Engn, San Antonio, TX 78249 USA; Univ Texas San Antonio, Dept Comp Sci, San Antonio, TX 78249 USA; Kyungpook Natl Univ, Sch Elect Engn, Daegu 41566, South Korea wazid, mohammad/X-4211-2018; WAZID, MOHAMMAD/X-4211-2018; Das, Ashok Kumar/U-2790-2019; Choo, Kim-Kwang Raymond/A-3634-2009 55480987400; 55450732800; 57208540261; 56962990300 wazidkec2005@gmail.com;iitkgp.akdas@gmail.com;raymond.choo@fulbrightmail.org;parkyh@knu.ac.kr; IEEE INTERNET OF THINGS JOURNAL IEEE INTERNET THINGS 2327-4662 9 13 SCIE COMPUTER SCIENCE, INFORMATION SYSTEMS;ENGINEERING, ELECTRICAL & ELECTRONIC;TELECOMMUNICATIONS 2022 10.6 2.2 1.64 2025-06-25 20 21 Security; Authentication; Computational modeling; Cloud computing; Logic gates; Smart devices; Elliptic curves; Authentication; big data analytics; privacy; security; simulation; Web of Things (WoT) AUTHENTICATION SCHEME; KEY-EXCHANGE; HEALTH-CARE; BIG DATA; INTERNET; VERIFICATION; PROTOCOL; STORAGE Authentication; big data analytics; privacy; security; simulation; Web of Things (WoT) Authentication; Big data; Data privacy; Intelligent systems; Big data analytic; Data analytics; Performance; Privacy; Secure communication scheme; Security; Simulation; Web interface; Web of thing; Web-based applications; Internet of things English 2022 2022-07-01 10.1109/jiot.2021.3122007 바로가기 바로가기 바로가기 바로가기
페이지 이동: